On Proton Conductivity in Porous and Dense Yttria Stabilized Zirconia at Low Temperature
The electrical conductivity of dense and nanoporous zirconia‐based thin films is compared to results obtained on bulk yttria stabilized zirconia (YSZ) ceramics. Different thin film preparation methods are used in order to vary grain size, grain shape, and porosity of the thin films. In porous films,...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2013-04, Vol.23 (15), p.1957-1964 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1964 |
---|---|
container_issue | 15 |
container_start_page | 1957 |
container_title | Advanced functional materials |
container_volume | 23 |
creator | Scherrer, Barbara Schlupp, Meike V.F. Stender, Dieter Martynczuk, Julia Grolig, Jan G. Ma, Huan Kocher, Peter Lippert, Thomas Prestat, Michel Gauckler, Ludwig J. |
description | The electrical conductivity of dense and nanoporous zirconia‐based thin films is compared to results obtained on bulk yttria stabilized zirconia (YSZ) ceramics. Different thin film preparation methods are used in order to vary grain size, grain shape, and porosity of the thin films. In porous films, a rather high conductivity is found at room temperature which decreases with increasing temperature to 120 °C. This conductivity is attributed to proton conduction along physisorbed water (Grotthuss mechanism) at the inner surfaces. It is highly dependent on the humidity of the surrounding atmosphere. At temperatures above 120 °C, the conductivity is thermally activated with activation energies between 0.4 and 1.1 eV. In this temperature regime the conduction is due to oxygen ions as well as protons. Proton conduction is caused by hydroxyl groups at the inner surface of the porous films. The effect vanishes above 400 °C, and pure oxygen ion conductivity with an activation energy of 0.9 to 1.3 eV prevails. The same behavior can also be observed in nanoporous bulk ceramic YSZ. In contrast to the nanoporous YSZ, fully dense nanocrystalline thin films only show oxygen ion conductivity, even down to 70 °C with an expected activation energy of 1.0 ± 0.1 eV. No proton conductivity through grain boundaries could be detected in these nanocrystalline, but dense thin films.
The electrical conductivity below 400 °C of porous yttria stabilized zirconia (YSZ) deviates from the oxygen‐ion conductivity due to proton conduction via chemisorbed water in the form of hydroxyl groups at the inner surface. Below 120 °C, proton conductivity via physisorbed water in the nanoporous microstructures sets in (Grotthuss mechanism). Dense thin films show oxygen‐ion conductivity only and no proton conductivity is present. |
doi_str_mv | 10.1002/adfm.201202020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439763898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439763898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4260-f8c34074c60316a60ebdd53b3ae7aa8e5426f9eeba4f0ee85cbf88bb94f2975c3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEqWwMntkSbHjfDhj1UJBKi2oAQqL5TgXyZDGxXYo5deTKqhiQzfc6fQ8p9PreecEDwjGwaUoytUgwCTAuzrweiQmsU9xwA73M1keeyfWvmFMkoSGPW85r9G90U7XaKTropFOfSq3Rapda6Mbi0RdoDHUFtCLc0YJtHAiV5X6hgK9KiN13e6EQ1O9QRms1mCEawycekelqCyc_fa-93h9lY1u_Ol8cjsaTn0ZBjH2SyZpiJNQxpiSWMQY8qKIaE4FJEIwiFqqTAFyEZYYgEUyLxnL8zQsgzSJJO17F93dtdEfDVjHV8pKqCpRQ_s-JyFNk5iylLXooEOl0dYaKPnaqJUwW04w30XIdxHyfYStkHbCRlWw_Yfmw_H13V_X71xlHXztXWHeeZzQJOLPswl_esALkmUpn9EfNuGFgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439763898</pqid></control><display><type>article</type><title>On Proton Conductivity in Porous and Dense Yttria Stabilized Zirconia at Low Temperature</title><source>Wiley Online Library All Journals</source><creator>Scherrer, Barbara ; Schlupp, Meike V.F. ; Stender, Dieter ; Martynczuk, Julia ; Grolig, Jan G. ; Ma, Huan ; Kocher, Peter ; Lippert, Thomas ; Prestat, Michel ; Gauckler, Ludwig J.</creator><creatorcontrib>Scherrer, Barbara ; Schlupp, Meike V.F. ; Stender, Dieter ; Martynczuk, Julia ; Grolig, Jan G. ; Ma, Huan ; Kocher, Peter ; Lippert, Thomas ; Prestat, Michel ; Gauckler, Ludwig J.</creatorcontrib><description>The electrical conductivity of dense and nanoporous zirconia‐based thin films is compared to results obtained on bulk yttria stabilized zirconia (YSZ) ceramics. Different thin film preparation methods are used in order to vary grain size, grain shape, and porosity of the thin films. In porous films, a rather high conductivity is found at room temperature which decreases with increasing temperature to 120 °C. This conductivity is attributed to proton conduction along physisorbed water (Grotthuss mechanism) at the inner surfaces. It is highly dependent on the humidity of the surrounding atmosphere. At temperatures above 120 °C, the conductivity is thermally activated with activation energies between 0.4 and 1.1 eV. In this temperature regime the conduction is due to oxygen ions as well as protons. Proton conduction is caused by hydroxyl groups at the inner surface of the porous films. The effect vanishes above 400 °C, and pure oxygen ion conductivity with an activation energy of 0.9 to 1.3 eV prevails. The same behavior can also be observed in nanoporous bulk ceramic YSZ. In contrast to the nanoporous YSZ, fully dense nanocrystalline thin films only show oxygen ion conductivity, even down to 70 °C with an expected activation energy of 1.0 ± 0.1 eV. No proton conductivity through grain boundaries could be detected in these nanocrystalline, but dense thin films.
The electrical conductivity below 400 °C of porous yttria stabilized zirconia (YSZ) deviates from the oxygen‐ion conductivity due to proton conduction via chemisorbed water in the form of hydroxyl groups at the inner surface. Below 120 °C, proton conductivity via physisorbed water in the nanoporous microstructures sets in (Grotthuss mechanism). Dense thin films show oxygen‐ion conductivity only and no proton conductivity is present.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201202020</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Conductivity ; Nanocomposites ; nanoctystallinity ; Nanomaterials ; Nanostructure ; porosity ; Proton conduction ; proton conductivity ; Resistivity ; Thin films ; Yttria stabilized zirconia</subject><ispartof>Advanced functional materials, 2013-04, Vol.23 (15), p.1957-1964</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4260-f8c34074c60316a60ebdd53b3ae7aa8e5426f9eeba4f0ee85cbf88bb94f2975c3</citedby><cites>FETCH-LOGICAL-c4260-f8c34074c60316a60ebdd53b3ae7aa8e5426f9eeba4f0ee85cbf88bb94f2975c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201202020$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201202020$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Scherrer, Barbara</creatorcontrib><creatorcontrib>Schlupp, Meike V.F.</creatorcontrib><creatorcontrib>Stender, Dieter</creatorcontrib><creatorcontrib>Martynczuk, Julia</creatorcontrib><creatorcontrib>Grolig, Jan G.</creatorcontrib><creatorcontrib>Ma, Huan</creatorcontrib><creatorcontrib>Kocher, Peter</creatorcontrib><creatorcontrib>Lippert, Thomas</creatorcontrib><creatorcontrib>Prestat, Michel</creatorcontrib><creatorcontrib>Gauckler, Ludwig J.</creatorcontrib><title>On Proton Conductivity in Porous and Dense Yttria Stabilized Zirconia at Low Temperature</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The electrical conductivity of dense and nanoporous zirconia‐based thin films is compared to results obtained on bulk yttria stabilized zirconia (YSZ) ceramics. Different thin film preparation methods are used in order to vary grain size, grain shape, and porosity of the thin films. In porous films, a rather high conductivity is found at room temperature which decreases with increasing temperature to 120 °C. This conductivity is attributed to proton conduction along physisorbed water (Grotthuss mechanism) at the inner surfaces. It is highly dependent on the humidity of the surrounding atmosphere. At temperatures above 120 °C, the conductivity is thermally activated with activation energies between 0.4 and 1.1 eV. In this temperature regime the conduction is due to oxygen ions as well as protons. Proton conduction is caused by hydroxyl groups at the inner surface of the porous films. The effect vanishes above 400 °C, and pure oxygen ion conductivity with an activation energy of 0.9 to 1.3 eV prevails. The same behavior can also be observed in nanoporous bulk ceramic YSZ. In contrast to the nanoporous YSZ, fully dense nanocrystalline thin films only show oxygen ion conductivity, even down to 70 °C with an expected activation energy of 1.0 ± 0.1 eV. No proton conductivity through grain boundaries could be detected in these nanocrystalline, but dense thin films.
The electrical conductivity below 400 °C of porous yttria stabilized zirconia (YSZ) deviates from the oxygen‐ion conductivity due to proton conduction via chemisorbed water in the form of hydroxyl groups at the inner surface. Below 120 °C, proton conductivity via physisorbed water in the nanoporous microstructures sets in (Grotthuss mechanism). Dense thin films show oxygen‐ion conductivity only and no proton conductivity is present.</description><subject>Conductivity</subject><subject>Nanocomposites</subject><subject>nanoctystallinity</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>porosity</subject><subject>Proton conduction</subject><subject>proton conductivity</subject><subject>Resistivity</subject><subject>Thin films</subject><subject>Yttria stabilized zirconia</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhiMEEqWwMntkSbHjfDhj1UJBKi2oAQqL5TgXyZDGxXYo5deTKqhiQzfc6fQ8p9PreecEDwjGwaUoytUgwCTAuzrweiQmsU9xwA73M1keeyfWvmFMkoSGPW85r9G90U7XaKTropFOfSq3Rapda6Mbi0RdoDHUFtCLc0YJtHAiV5X6hgK9KiN13e6EQ1O9QRms1mCEawycekelqCyc_fa-93h9lY1u_Ol8cjsaTn0ZBjH2SyZpiJNQxpiSWMQY8qKIaE4FJEIwiFqqTAFyEZYYgEUyLxnL8zQsgzSJJO17F93dtdEfDVjHV8pKqCpRQ_s-JyFNk5iylLXooEOl0dYaKPnaqJUwW04w30XIdxHyfYStkHbCRlWw_Yfmw_H13V_X71xlHXztXWHeeZzQJOLPswl_esALkmUpn9EfNuGFgQ</recordid><startdate>20130419</startdate><enddate>20130419</enddate><creator>Scherrer, Barbara</creator><creator>Schlupp, Meike V.F.</creator><creator>Stender, Dieter</creator><creator>Martynczuk, Julia</creator><creator>Grolig, Jan G.</creator><creator>Ma, Huan</creator><creator>Kocher, Peter</creator><creator>Lippert, Thomas</creator><creator>Prestat, Michel</creator><creator>Gauckler, Ludwig J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130419</creationdate><title>On Proton Conductivity in Porous and Dense Yttria Stabilized Zirconia at Low Temperature</title><author>Scherrer, Barbara ; Schlupp, Meike V.F. ; Stender, Dieter ; Martynczuk, Julia ; Grolig, Jan G. ; Ma, Huan ; Kocher, Peter ; Lippert, Thomas ; Prestat, Michel ; Gauckler, Ludwig J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4260-f8c34074c60316a60ebdd53b3ae7aa8e5426f9eeba4f0ee85cbf88bb94f2975c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Conductivity</topic><topic>Nanocomposites</topic><topic>nanoctystallinity</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>porosity</topic><topic>Proton conduction</topic><topic>proton conductivity</topic><topic>Resistivity</topic><topic>Thin films</topic><topic>Yttria stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scherrer, Barbara</creatorcontrib><creatorcontrib>Schlupp, Meike V.F.</creatorcontrib><creatorcontrib>Stender, Dieter</creatorcontrib><creatorcontrib>Martynczuk, Julia</creatorcontrib><creatorcontrib>Grolig, Jan G.</creatorcontrib><creatorcontrib>Ma, Huan</creatorcontrib><creatorcontrib>Kocher, Peter</creatorcontrib><creatorcontrib>Lippert, Thomas</creatorcontrib><creatorcontrib>Prestat, Michel</creatorcontrib><creatorcontrib>Gauckler, Ludwig J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scherrer, Barbara</au><au>Schlupp, Meike V.F.</au><au>Stender, Dieter</au><au>Martynczuk, Julia</au><au>Grolig, Jan G.</au><au>Ma, Huan</au><au>Kocher, Peter</au><au>Lippert, Thomas</au><au>Prestat, Michel</au><au>Gauckler, Ludwig J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Proton Conductivity in Porous and Dense Yttria Stabilized Zirconia at Low Temperature</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2013-04-19</date><risdate>2013</risdate><volume>23</volume><issue>15</issue><spage>1957</spage><epage>1964</epage><pages>1957-1964</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The electrical conductivity of dense and nanoporous zirconia‐based thin films is compared to results obtained on bulk yttria stabilized zirconia (YSZ) ceramics. Different thin film preparation methods are used in order to vary grain size, grain shape, and porosity of the thin films. In porous films, a rather high conductivity is found at room temperature which decreases with increasing temperature to 120 °C. This conductivity is attributed to proton conduction along physisorbed water (Grotthuss mechanism) at the inner surfaces. It is highly dependent on the humidity of the surrounding atmosphere. At temperatures above 120 °C, the conductivity is thermally activated with activation energies between 0.4 and 1.1 eV. In this temperature regime the conduction is due to oxygen ions as well as protons. Proton conduction is caused by hydroxyl groups at the inner surface of the porous films. The effect vanishes above 400 °C, and pure oxygen ion conductivity with an activation energy of 0.9 to 1.3 eV prevails. The same behavior can also be observed in nanoporous bulk ceramic YSZ. In contrast to the nanoporous YSZ, fully dense nanocrystalline thin films only show oxygen ion conductivity, even down to 70 °C with an expected activation energy of 1.0 ± 0.1 eV. No proton conductivity through grain boundaries could be detected in these nanocrystalline, but dense thin films.
The electrical conductivity below 400 °C of porous yttria stabilized zirconia (YSZ) deviates from the oxygen‐ion conductivity due to proton conduction via chemisorbed water in the form of hydroxyl groups at the inner surface. Below 120 °C, proton conductivity via physisorbed water in the nanoporous microstructures sets in (Grotthuss mechanism). Dense thin films show oxygen‐ion conductivity only and no proton conductivity is present.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201202020</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2013-04, Vol.23 (15), p.1957-1964 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439763898 |
source | Wiley Online Library All Journals |
subjects | Conductivity Nanocomposites nanoctystallinity Nanomaterials Nanostructure porosity Proton conduction proton conductivity Resistivity Thin films Yttria stabilized zirconia |
title | On Proton Conductivity in Porous and Dense Yttria Stabilized Zirconia at Low Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Proton%20Conductivity%20in%20Porous%20and%20Dense%20Yttria%20Stabilized%20Zirconia%20at%20Low%20Temperature&rft.jtitle=Advanced%20functional%20materials&rft.au=Scherrer,%20Barbara&rft.date=2013-04-19&rft.volume=23&rft.issue=15&rft.spage=1957&rft.epage=1964&rft.pages=1957-1964&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201202020&rft_dat=%3Cproquest_cross%3E1439763898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439763898&rft_id=info:pmid/&rfr_iscdi=true |