3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation
X-ray microtomography and Digital Volume Correlation are used to characterize the compressive behavior of fibrous materials, composed of wood fibers and thermoplastic fibers. 9-mm height and 9-mm diameter specimens are compressed uniaxially up to 30 % compression rate with an increment of 5 %. The e...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2013-04, Vol.48 (8), p.3198-3212 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3212 |
---|---|
container_issue | 8 |
container_start_page | 3198 |
container_title | Journal of materials science |
container_volume | 48 |
creator | Tran, H. Doumalin, P. Delisee, C. Dupre, J. C. Malvestio, J. Germaneau, A. |
description | X-ray microtomography and Digital Volume Correlation are used to characterize the compressive behavior of fibrous materials, composed of wood fibers and thermoplastic fibers. 9-mm height and 9-mm diameter specimens are compressed uniaxially up to 30 % compression rate with an increment of 5 %. The evolution of microstructure is followed at different compression states by X-ray microtomography at a spatial resolution of 6 μm per voxel. Digital Volume Correlation is applied on microtomographic images to obtain the 3D strain field at each loaded state. The studied material shows a heterogeneous local strain field which relates not only to the complex microstructure but also to its modifications under solicitations. Microstructural parameters such as distributions of local porosities and fiber diameters are computed at different states by mathematical morphology. Relations between morphological parameters and 3D strain field are established. In a first approach, we show that the local mechanical behavior is controlled by distributions of local porosities. |
doi_str_mv | 10.1007/s10853-012-7100-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439760614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A377530565</galeid><sourcerecordid>A377530565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-c9bf5a254d477f47e3651001b03a7a2b314bec387a47c3ed10be364dcb32da193</originalsourceid><addsrcrecordid>eNp1kUuLFDEUhQtRsG39Ae4CbnSRMc9K13LoGXVgQPCFu3DzqJoMVZU2STHWwv9uhhJkBMniwuU7J8k5TfOSkjNKiHqbKTlIjgllWNUFJo-aHZWKY3Eg_HGzI4QxzERLnzbPcr4lhEjF6K75xS_Q5O0NzMHCiGCGcc0ho9ijMd5h5-ccyoruYnTYQPYO9cH4ZCIkl5FZ0XecYEVTsCnaOJ2WUpESpzgkON2s1dChizCEUs2_xXGZPDrGlPwIJcT5efOkhzH7F3_mvvn67vLL8QO-_vj-6nh-ja1grGDbmV4Ck8IJpXqhPG9l_SQ1hIMCZjgVxlt-UCCU5d5RYioinDWcOaAd3zevN99Tij8Wn4ueQrZ-HGH2ccmaCt6plrR17ptX_6C3cUk1lqwZk52qV3dtpc42aoDR6zD3sSSw9Thfo4iz70Pdn3OlJCeylVXw5oGgMsX_LAMsOeurz58esnRja6Y5J9_rUwoTpFVTou_b1lvburat79vWpGrYpsmVnQef_j77_6Lfh2OsWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259736596</pqid></control><display><type>article</type><title>3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tran, H. ; Doumalin, P. ; Delisee, C. ; Dupre, J. C. ; Malvestio, J. ; Germaneau, A.</creator><creatorcontrib>Tran, H. ; Doumalin, P. ; Delisee, C. ; Dupre, J. C. ; Malvestio, J. ; Germaneau, A.</creatorcontrib><description>X-ray microtomography and Digital Volume Correlation are used to characterize the compressive behavior of fibrous materials, composed of wood fibers and thermoplastic fibers. 9-mm height and 9-mm diameter specimens are compressed uniaxially up to 30 % compression rate with an increment of 5 %. The evolution of microstructure is followed at different compression states by X-ray microtomography at a spatial resolution of 6 μm per voxel. Digital Volume Correlation is applied on microtomographic images to obtain the 3D strain field at each loaded state. The studied material shows a heterogeneous local strain field which relates not only to the complex microstructure but also to its modifications under solicitations. Microstructural parameters such as distributions of local porosities and fiber diameters are computed at different states by mathematical morphology. Relations between morphological parameters and 3D strain field are established. In a first approach, we show that the local mechanical behavior is controlled by distributions of local porosities.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-012-7100-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compressing ; Compressive properties ; Correlation ; Crystallography and Scattering Methods ; Digital ; Digital imaging ; Fibers ; Materials Science ; Mathematical analysis ; Mathematical morphology ; Mechanical analysis ; Mechanical properties ; Microstructure ; Paper board ; Paperboard ; Parameter modification ; Polymer Sciences ; Solid Mechanics ; Spatial resolution ; Strain ; Thermoplastics ; Three dimensional ; Tomography ; Wood fibers ; X ray microtomography</subject><ispartof>Journal of materials science, 2013-04, Vol.48 (8), p.3198-3212</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-c9bf5a254d477f47e3651001b03a7a2b314bec387a47c3ed10be364dcb32da193</citedby><cites>FETCH-LOGICAL-c422t-c9bf5a254d477f47e3651001b03a7a2b314bec387a47c3ed10be364dcb32da193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-012-7100-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-012-7100-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tran, H.</creatorcontrib><creatorcontrib>Doumalin, P.</creatorcontrib><creatorcontrib>Delisee, C.</creatorcontrib><creatorcontrib>Dupre, J. C.</creatorcontrib><creatorcontrib>Malvestio, J.</creatorcontrib><creatorcontrib>Germaneau, A.</creatorcontrib><title>3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>X-ray microtomography and Digital Volume Correlation are used to characterize the compressive behavior of fibrous materials, composed of wood fibers and thermoplastic fibers. 9-mm height and 9-mm diameter specimens are compressed uniaxially up to 30 % compression rate with an increment of 5 %. The evolution of microstructure is followed at different compression states by X-ray microtomography at a spatial resolution of 6 μm per voxel. Digital Volume Correlation is applied on microtomographic images to obtain the 3D strain field at each loaded state. The studied material shows a heterogeneous local strain field which relates not only to the complex microstructure but also to its modifications under solicitations. Microstructural parameters such as distributions of local porosities and fiber diameters are computed at different states by mathematical morphology. Relations between morphological parameters and 3D strain field are established. In a first approach, we show that the local mechanical behavior is controlled by distributions of local porosities.</description><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compressing</subject><subject>Compressive properties</subject><subject>Correlation</subject><subject>Crystallography and Scattering Methods</subject><subject>Digital</subject><subject>Digital imaging</subject><subject>Fibers</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical morphology</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Paper board</subject><subject>Paperboard</subject><subject>Parameter modification</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Spatial resolution</subject><subject>Strain</subject><subject>Thermoplastics</subject><subject>Three dimensional</subject><subject>Tomography</subject><subject>Wood fibers</subject><subject>X ray microtomography</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUuLFDEUhQtRsG39Ae4CbnSRMc9K13LoGXVgQPCFu3DzqJoMVZU2STHWwv9uhhJkBMniwuU7J8k5TfOSkjNKiHqbKTlIjgllWNUFJo-aHZWKY3Eg_HGzI4QxzERLnzbPcr4lhEjF6K75xS_Q5O0NzMHCiGCGcc0ho9ijMd5h5-ccyoruYnTYQPYO9cH4ZCIkl5FZ0XecYEVTsCnaOJ2WUpESpzgkON2s1dChizCEUs2_xXGZPDrGlPwIJcT5efOkhzH7F3_mvvn67vLL8QO-_vj-6nh-ja1grGDbmV4Ck8IJpXqhPG9l_SQ1hIMCZjgVxlt-UCCU5d5RYioinDWcOaAd3zevN99Tij8Wn4ueQrZ-HGH2ccmaCt6plrR17ptX_6C3cUk1lqwZk52qV3dtpc42aoDR6zD3sSSw9Thfo4iz70Pdn3OlJCeylVXw5oGgMsX_LAMsOeurz58esnRja6Y5J9_rUwoTpFVTou_b1lvburat79vWpGrYpsmVnQef_j77_6Lfh2OsWg</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Tran, H.</creator><creator>Doumalin, P.</creator><creator>Delisee, C.</creator><creator>Dupre, J. C.</creator><creator>Malvestio, J.</creator><creator>Germaneau, A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130401</creationdate><title>3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation</title><author>Tran, H. ; Doumalin, P. ; Delisee, C. ; Dupre, J. C. ; Malvestio, J. ; Germaneau, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-c9bf5a254d477f47e3651001b03a7a2b314bec387a47c3ed10be364dcb32da193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compressing</topic><topic>Compressive properties</topic><topic>Correlation</topic><topic>Crystallography and Scattering Methods</topic><topic>Digital</topic><topic>Digital imaging</topic><topic>Fibers</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical morphology</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Paper board</topic><topic>Paperboard</topic><topic>Parameter modification</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Spatial resolution</topic><topic>Strain</topic><topic>Thermoplastics</topic><topic>Three dimensional</topic><topic>Tomography</topic><topic>Wood fibers</topic><topic>X ray microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, H.</creatorcontrib><creatorcontrib>Doumalin, P.</creatorcontrib><creatorcontrib>Delisee, C.</creatorcontrib><creatorcontrib>Dupre, J. C.</creatorcontrib><creatorcontrib>Malvestio, J.</creatorcontrib><creatorcontrib>Germaneau, A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, H.</au><au>Doumalin, P.</au><au>Delisee, C.</au><au>Dupre, J. C.</au><au>Malvestio, J.</au><au>Germaneau, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>48</volume><issue>8</issue><spage>3198</spage><epage>3212</epage><pages>3198-3212</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>X-ray microtomography and Digital Volume Correlation are used to characterize the compressive behavior of fibrous materials, composed of wood fibers and thermoplastic fibers. 9-mm height and 9-mm diameter specimens are compressed uniaxially up to 30 % compression rate with an increment of 5 %. The evolution of microstructure is followed at different compression states by X-ray microtomography at a spatial resolution of 6 μm per voxel. Digital Volume Correlation is applied on microtomographic images to obtain the 3D strain field at each loaded state. The studied material shows a heterogeneous local strain field which relates not only to the complex microstructure but also to its modifications under solicitations. Microstructural parameters such as distributions of local porosities and fiber diameters are computed at different states by mathematical morphology. Relations between morphological parameters and 3D strain field are established. In a first approach, we show that the local mechanical behavior is controlled by distributions of local porosities.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-012-7100-0</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2013-04, Vol.48 (8), p.3198-3212 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439760614 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Compressing Compressive properties Correlation Crystallography and Scattering Methods Digital Digital imaging Fibers Materials Science Mathematical analysis Mathematical morphology Mechanical analysis Mechanical properties Microstructure Paper board Paperboard Parameter modification Polymer Sciences Solid Mechanics Spatial resolution Strain Thermoplastics Three dimensional Tomography Wood fibers X ray microtomography |
title | 3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20mechanical%20analysis%20of%20low-density%20wood-based%20fiberboards%20by%20X-ray%20microcomputed%20tomography%20and%20Digital%20Volume%20Correlation&rft.jtitle=Journal%20of%20materials%20science&rft.au=Tran,%20H.&rft.date=2013-04-01&rft.volume=48&rft.issue=8&rft.spage=3198&rft.epage=3212&rft.pages=3198-3212&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-012-7100-0&rft_dat=%3Cgale_proqu%3EA377530565%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259736596&rft_id=info:pmid/&rft_galeid=A377530565&rfr_iscdi=true |