3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation

X-ray microtomography and Digital Volume Correlation are used to characterize the compressive behavior of fibrous materials, composed of wood fibers and thermoplastic fibers. 9-mm height and 9-mm diameter specimens are compressed uniaxially up to 30 % compression rate with an increment of 5 %. The e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2013-04, Vol.48 (8), p.3198-3212
Hauptverfasser: Tran, H., Doumalin, P., Delisee, C., Dupre, J. C., Malvestio, J., Germaneau, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3212
container_issue 8
container_start_page 3198
container_title Journal of materials science
container_volume 48
creator Tran, H.
Doumalin, P.
Delisee, C.
Dupre, J. C.
Malvestio, J.
Germaneau, A.
description X-ray microtomography and Digital Volume Correlation are used to characterize the compressive behavior of fibrous materials, composed of wood fibers and thermoplastic fibers. 9-mm height and 9-mm diameter specimens are compressed uniaxially up to 30 % compression rate with an increment of 5 %. The evolution of microstructure is followed at different compression states by X-ray microtomography at a spatial resolution of 6 μm per voxel. Digital Volume Correlation is applied on microtomographic images to obtain the 3D strain field at each loaded state. The studied material shows a heterogeneous local strain field which relates not only to the complex microstructure but also to its modifications under solicitations. Microstructural parameters such as distributions of local porosities and fiber diameters are computed at different states by mathematical morphology. Relations between morphological parameters and 3D strain field are established. In a first approach, we show that the local mechanical behavior is controlled by distributions of local porosities.
doi_str_mv 10.1007/s10853-012-7100-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439760614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A377530565</galeid><sourcerecordid>A377530565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-c9bf5a254d477f47e3651001b03a7a2b314bec387a47c3ed10be364dcb32da193</originalsourceid><addsrcrecordid>eNp1kUuLFDEUhQtRsG39Ae4CbnSRMc9K13LoGXVgQPCFu3DzqJoMVZU2STHWwv9uhhJkBMniwuU7J8k5TfOSkjNKiHqbKTlIjgllWNUFJo-aHZWKY3Eg_HGzI4QxzERLnzbPcr4lhEjF6K75xS_Q5O0NzMHCiGCGcc0ho9ijMd5h5-ccyoruYnTYQPYO9cH4ZCIkl5FZ0XecYEVTsCnaOJ2WUpESpzgkON2s1dChizCEUs2_xXGZPDrGlPwIJcT5efOkhzH7F3_mvvn67vLL8QO-_vj-6nh-ja1grGDbmV4Ck8IJpXqhPG9l_SQ1hIMCZjgVxlt-UCCU5d5RYioinDWcOaAd3zevN99Tij8Wn4ueQrZ-HGH2ccmaCt6plrR17ptX_6C3cUk1lqwZk52qV3dtpc42aoDR6zD3sSSw9Thfo4iz70Pdn3OlJCeylVXw5oGgMsX_LAMsOeurz58esnRja6Y5J9_rUwoTpFVTou_b1lvburat79vWpGrYpsmVnQef_j77_6Lfh2OsWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259736596</pqid></control><display><type>article</type><title>3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tran, H. ; Doumalin, P. ; Delisee, C. ; Dupre, J. C. ; Malvestio, J. ; Germaneau, A.</creator><creatorcontrib>Tran, H. ; Doumalin, P. ; Delisee, C. ; Dupre, J. C. ; Malvestio, J. ; Germaneau, A.</creatorcontrib><description>X-ray microtomography and Digital Volume Correlation are used to characterize the compressive behavior of fibrous materials, composed of wood fibers and thermoplastic fibers. 9-mm height and 9-mm diameter specimens are compressed uniaxially up to 30 % compression rate with an increment of 5 %. The evolution of microstructure is followed at different compression states by X-ray microtomography at a spatial resolution of 6 μm per voxel. Digital Volume Correlation is applied on microtomographic images to obtain the 3D strain field at each loaded state. The studied material shows a heterogeneous local strain field which relates not only to the complex microstructure but also to its modifications under solicitations. Microstructural parameters such as distributions of local porosities and fiber diameters are computed at different states by mathematical morphology. Relations between morphological parameters and 3D strain field are established. In a first approach, we show that the local mechanical behavior is controlled by distributions of local porosities.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-012-7100-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compressing ; Compressive properties ; Correlation ; Crystallography and Scattering Methods ; Digital ; Digital imaging ; Fibers ; Materials Science ; Mathematical analysis ; Mathematical morphology ; Mechanical analysis ; Mechanical properties ; Microstructure ; Paper board ; Paperboard ; Parameter modification ; Polymer Sciences ; Solid Mechanics ; Spatial resolution ; Strain ; Thermoplastics ; Three dimensional ; Tomography ; Wood fibers ; X ray microtomography</subject><ispartof>Journal of materials science, 2013-04, Vol.48 (8), p.3198-3212</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-c9bf5a254d477f47e3651001b03a7a2b314bec387a47c3ed10be364dcb32da193</citedby><cites>FETCH-LOGICAL-c422t-c9bf5a254d477f47e3651001b03a7a2b314bec387a47c3ed10be364dcb32da193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-012-7100-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-012-7100-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tran, H.</creatorcontrib><creatorcontrib>Doumalin, P.</creatorcontrib><creatorcontrib>Delisee, C.</creatorcontrib><creatorcontrib>Dupre, J. C.</creatorcontrib><creatorcontrib>Malvestio, J.</creatorcontrib><creatorcontrib>Germaneau, A.</creatorcontrib><title>3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>X-ray microtomography and Digital Volume Correlation are used to characterize the compressive behavior of fibrous materials, composed of wood fibers and thermoplastic fibers. 9-mm height and 9-mm diameter specimens are compressed uniaxially up to 30 % compression rate with an increment of 5 %. The evolution of microstructure is followed at different compression states by X-ray microtomography at a spatial resolution of 6 μm per voxel. Digital Volume Correlation is applied on microtomographic images to obtain the 3D strain field at each loaded state. The studied material shows a heterogeneous local strain field which relates not only to the complex microstructure but also to its modifications under solicitations. Microstructural parameters such as distributions of local porosities and fiber diameters are computed at different states by mathematical morphology. Relations between morphological parameters and 3D strain field are established. In a first approach, we show that the local mechanical behavior is controlled by distributions of local porosities.</description><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compressing</subject><subject>Compressive properties</subject><subject>Correlation</subject><subject>Crystallography and Scattering Methods</subject><subject>Digital</subject><subject>Digital imaging</subject><subject>Fibers</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical morphology</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Paper board</subject><subject>Paperboard</subject><subject>Parameter modification</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Spatial resolution</subject><subject>Strain</subject><subject>Thermoplastics</subject><subject>Three dimensional</subject><subject>Tomography</subject><subject>Wood fibers</subject><subject>X ray microtomography</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUuLFDEUhQtRsG39Ae4CbnSRMc9K13LoGXVgQPCFu3DzqJoMVZU2STHWwv9uhhJkBMniwuU7J8k5TfOSkjNKiHqbKTlIjgllWNUFJo-aHZWKY3Eg_HGzI4QxzERLnzbPcr4lhEjF6K75xS_Q5O0NzMHCiGCGcc0ho9ijMd5h5-ccyoruYnTYQPYO9cH4ZCIkl5FZ0XecYEVTsCnaOJ2WUpESpzgkON2s1dChizCEUs2_xXGZPDrGlPwIJcT5efOkhzH7F3_mvvn67vLL8QO-_vj-6nh-ja1grGDbmV4Ck8IJpXqhPG9l_SQ1hIMCZjgVxlt-UCCU5d5RYioinDWcOaAd3zevN99Tij8Wn4ueQrZ-HGH2ccmaCt6plrR17ptX_6C3cUk1lqwZk52qV3dtpc42aoDR6zD3sSSw9Thfo4iz70Pdn3OlJCeylVXw5oGgMsX_LAMsOeurz58esnRja6Y5J9_rUwoTpFVTou_b1lvburat79vWpGrYpsmVnQef_j77_6Lfh2OsWg</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Tran, H.</creator><creator>Doumalin, P.</creator><creator>Delisee, C.</creator><creator>Dupre, J. C.</creator><creator>Malvestio, J.</creator><creator>Germaneau, A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130401</creationdate><title>3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation</title><author>Tran, H. ; Doumalin, P. ; Delisee, C. ; Dupre, J. C. ; Malvestio, J. ; Germaneau, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-c9bf5a254d477f47e3651001b03a7a2b314bec387a47c3ed10be364dcb32da193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compressing</topic><topic>Compressive properties</topic><topic>Correlation</topic><topic>Crystallography and Scattering Methods</topic><topic>Digital</topic><topic>Digital imaging</topic><topic>Fibers</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical morphology</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Paper board</topic><topic>Paperboard</topic><topic>Parameter modification</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Spatial resolution</topic><topic>Strain</topic><topic>Thermoplastics</topic><topic>Three dimensional</topic><topic>Tomography</topic><topic>Wood fibers</topic><topic>X ray microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, H.</creatorcontrib><creatorcontrib>Doumalin, P.</creatorcontrib><creatorcontrib>Delisee, C.</creatorcontrib><creatorcontrib>Dupre, J. C.</creatorcontrib><creatorcontrib>Malvestio, J.</creatorcontrib><creatorcontrib>Germaneau, A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, H.</au><au>Doumalin, P.</au><au>Delisee, C.</au><au>Dupre, J. C.</au><au>Malvestio, J.</au><au>Germaneau, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>48</volume><issue>8</issue><spage>3198</spage><epage>3212</epage><pages>3198-3212</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>X-ray microtomography and Digital Volume Correlation are used to characterize the compressive behavior of fibrous materials, composed of wood fibers and thermoplastic fibers. 9-mm height and 9-mm diameter specimens are compressed uniaxially up to 30 % compression rate with an increment of 5 %. The evolution of microstructure is followed at different compression states by X-ray microtomography at a spatial resolution of 6 μm per voxel. Digital Volume Correlation is applied on microtomographic images to obtain the 3D strain field at each loaded state. The studied material shows a heterogeneous local strain field which relates not only to the complex microstructure but also to its modifications under solicitations. Microstructural parameters such as distributions of local porosities and fiber diameters are computed at different states by mathematical morphology. Relations between morphological parameters and 3D strain field are established. In a first approach, we show that the local mechanical behavior is controlled by distributions of local porosities.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-012-7100-0</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2013-04, Vol.48 (8), p.3198-3212
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1439760614
source SpringerLink Journals - AutoHoldings
subjects Analysis
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Compressing
Compressive properties
Correlation
Crystallography and Scattering Methods
Digital
Digital imaging
Fibers
Materials Science
Mathematical analysis
Mathematical morphology
Mechanical analysis
Mechanical properties
Microstructure
Paper board
Paperboard
Parameter modification
Polymer Sciences
Solid Mechanics
Spatial resolution
Strain
Thermoplastics
Three dimensional
Tomography
Wood fibers
X ray microtomography
title 3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20mechanical%20analysis%20of%20low-density%20wood-based%20fiberboards%20by%20X-ray%20microcomputed%20tomography%20and%20Digital%20Volume%20Correlation&rft.jtitle=Journal%20of%20materials%20science&rft.au=Tran,%20H.&rft.date=2013-04-01&rft.volume=48&rft.issue=8&rft.spage=3198&rft.epage=3212&rft.pages=3198-3212&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-012-7100-0&rft_dat=%3Cgale_proqu%3EA377530565%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259736596&rft_id=info:pmid/&rft_galeid=A377530565&rfr_iscdi=true