Viscoelastically generated prestress from ultra-high molecular weight polyethylene fibres

The viscoelastic characteristics of ultra-high molecular weight polyethylene (UHMWPE) fibres are investigated, in terms of creep-induced recovery strain and force output, to evaluate their potential for producing a novel form of prestressed composite. Composite production involves subjecting fibres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2013-08, Vol.48 (16), p.5559-5570
Hauptverfasser: Fazal, Adnan, Fancey, Kevin S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5570
container_issue 16
container_start_page 5559
container_title Journal of materials science
container_volume 48
creator Fazal, Adnan
Fancey, Kevin S.
description The viscoelastic characteristics of ultra-high molecular weight polyethylene (UHMWPE) fibres are investigated, in terms of creep-induced recovery strain and force output, to evaluate their potential for producing a novel form of prestressed composite. Composite production involves subjecting fibres to tensile creep, the applied load being removed before moulding the fibres into a resin matrix. After matrix curing, the viscoelastically strained fibres impart compressive stresses to the surrounding matrix, to produce a viscoelastically prestressed polymeric matrix composite (VPPMC). Previous research has demonstrated that nylon fibre-based VPPMCs can improve mechanical properties without needing to increase mass or section dimensions. The viability of UHMWPE fibre-based VPPMCs is demonstrated through flexural stiffness tests. Compared with control (unstressed) counterparts, these VPPMCs typically show increases of 20–40 % in flexural modulus. Studies on the viscoelastic characteristics indicate that these fibres can release mechanical energy over a long-timescale and fibre core–skin interactions may have an important role.
doi_str_mv 10.1007/s10853-013-7350-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439760575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A339635981</galeid><sourcerecordid>A339635981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-51ea1c0279daec27e6510bc2a60e194ad26fcb3075eae89dea3275ddbb1b904f3</originalsourceid><addsrcrecordid>eNp1kV2L1DAUhoMoOK7-AO8K3uhF1pOkaaaXy-LqwoLgF3gV0vS00yVtxiRF5997hgqygoQQEp4nvIeXsZcCLgWAeZsF7LXiIBQ3SgPXj9hOaKN4vQf1mO0ApOSybsRT9iznewDQRood-_5tyj5icLlM3oVwqkZcMLmCfXVMmAvtXA0pztUaSnL8MI2Hao4B_Rpcqn4i3Ut1jOGE5XAKJFfD1JH1nD0ZXMj44s95wb7evPty_YHffXx_e311x70GWbgW6IQHadreoZcGGy2g89I1gKKtXS-bwXcKjEaH-7ZHp6TRfd91omuhHtQFe739e0zxx0qJ7UwjYQhuwbhmK2rVmobG1YS--ge9j2taKJ2VUrdGmlrVRF1u1OgC2mkZIs3tafU4Tz4uOEz0fqVU2yjd7gUJbx4IxBT8VUa35mxvP396yIqN9SnmnHCwxzTNLp2sAHtu0m5NWmrSnpu059hyczKxy4jpb-z_S78BjTqhOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259727434</pqid></control><display><type>article</type><title>Viscoelastically generated prestress from ultra-high molecular weight polyethylene fibres</title><source>SpringerLink Journals</source><creator>Fazal, Adnan ; Fancey, Kevin S.</creator><creatorcontrib>Fazal, Adnan ; Fancey, Kevin S.</creatorcontrib><description>The viscoelastic characteristics of ultra-high molecular weight polyethylene (UHMWPE) fibres are investigated, in terms of creep-induced recovery strain and force output, to evaluate their potential for producing a novel form of prestressed composite. Composite production involves subjecting fibres to tensile creep, the applied load being removed before moulding the fibres into a resin matrix. After matrix curing, the viscoelastically strained fibres impart compressive stresses to the surrounding matrix, to produce a viscoelastically prestressed polymeric matrix composite (VPPMC). Previous research has demonstrated that nylon fibre-based VPPMCs can improve mechanical properties without needing to increase mass or section dimensions. The viability of UHMWPE fibre-based VPPMCs is demonstrated through flexural stiffness tests. Compared with control (unstressed) counterparts, these VPPMCs typically show increases of 20–40 % in flexural modulus. Studies on the viscoelastic characteristics indicate that these fibres can release mechanical energy over a long-timescale and fibre core–skin interactions may have an important role.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7350-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compressive properties ; Creep (materials) ; Crystallography and Scattering Methods ; Curing ; Fibers ; Fibres ; Materials Science ; Mechanical properties ; Modulus of rupture in bending ; Molding (process) ; Molecular weight ; Polyethylene ; Polyethylenes ; Polymer Sciences ; Prestressing ; Solid Mechanics ; Stiffness tests ; Synthetic fibers industry ; Tensile creep ; Ultra high molecular weight polyethylene ; Viability ; Viscoelasticity</subject><ispartof>Journal of materials science, 2013-08, Vol.48 (16), p.5559-5570</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-51ea1c0279daec27e6510bc2a60e194ad26fcb3075eae89dea3275ddbb1b904f3</citedby><cites>FETCH-LOGICAL-c502t-51ea1c0279daec27e6510bc2a60e194ad26fcb3075eae89dea3275ddbb1b904f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-013-7350-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-013-7350-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Fazal, Adnan</creatorcontrib><creatorcontrib>Fancey, Kevin S.</creatorcontrib><title>Viscoelastically generated prestress from ultra-high molecular weight polyethylene fibres</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The viscoelastic characteristics of ultra-high molecular weight polyethylene (UHMWPE) fibres are investigated, in terms of creep-induced recovery strain and force output, to evaluate their potential for producing a novel form of prestressed composite. Composite production involves subjecting fibres to tensile creep, the applied load being removed before moulding the fibres into a resin matrix. After matrix curing, the viscoelastically strained fibres impart compressive stresses to the surrounding matrix, to produce a viscoelastically prestressed polymeric matrix composite (VPPMC). Previous research has demonstrated that nylon fibre-based VPPMCs can improve mechanical properties without needing to increase mass or section dimensions. The viability of UHMWPE fibre-based VPPMCs is demonstrated through flexural stiffness tests. Compared with control (unstressed) counterparts, these VPPMCs typically show increases of 20–40 % in flexural modulus. Studies on the viscoelastic characteristics indicate that these fibres can release mechanical energy over a long-timescale and fibre core–skin interactions may have an important role.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compressive properties</subject><subject>Creep (materials)</subject><subject>Crystallography and Scattering Methods</subject><subject>Curing</subject><subject>Fibers</subject><subject>Fibres</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Modulus of rupture in bending</subject><subject>Molding (process)</subject><subject>Molecular weight</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Polymer Sciences</subject><subject>Prestressing</subject><subject>Solid Mechanics</subject><subject>Stiffness tests</subject><subject>Synthetic fibers industry</subject><subject>Tensile creep</subject><subject>Ultra high molecular weight polyethylene</subject><subject>Viability</subject><subject>Viscoelasticity</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kV2L1DAUhoMoOK7-AO8K3uhF1pOkaaaXy-LqwoLgF3gV0vS00yVtxiRF5997hgqygoQQEp4nvIeXsZcCLgWAeZsF7LXiIBQ3SgPXj9hOaKN4vQf1mO0ApOSybsRT9iznewDQRood-_5tyj5icLlM3oVwqkZcMLmCfXVMmAvtXA0pztUaSnL8MI2Hao4B_Rpcqn4i3Ut1jOGE5XAKJFfD1JH1nD0ZXMj44s95wb7evPty_YHffXx_e311x70GWbgW6IQHadreoZcGGy2g89I1gKKtXS-bwXcKjEaH-7ZHp6TRfd91omuhHtQFe739e0zxx0qJ7UwjYQhuwbhmK2rVmobG1YS--ge9j2taKJ2VUrdGmlrVRF1u1OgC2mkZIs3tafU4Tz4uOEz0fqVU2yjd7gUJbx4IxBT8VUa35mxvP396yIqN9SnmnHCwxzTNLp2sAHtu0m5NWmrSnpu059hyczKxy4jpb-z_S78BjTqhOg</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Fazal, Adnan</creator><creator>Fancey, Kevin S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130801</creationdate><title>Viscoelastically generated prestress from ultra-high molecular weight polyethylene fibres</title><author>Fazal, Adnan ; Fancey, Kevin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-51ea1c0279daec27e6510bc2a60e194ad26fcb3075eae89dea3275ddbb1b904f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compressive properties</topic><topic>Creep (materials)</topic><topic>Crystallography and Scattering Methods</topic><topic>Curing</topic><topic>Fibers</topic><topic>Fibres</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Modulus of rupture in bending</topic><topic>Molding (process)</topic><topic>Molecular weight</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Polymer Sciences</topic><topic>Prestressing</topic><topic>Solid Mechanics</topic><topic>Stiffness tests</topic><topic>Synthetic fibers industry</topic><topic>Tensile creep</topic><topic>Ultra high molecular weight polyethylene</topic><topic>Viability</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fazal, Adnan</creatorcontrib><creatorcontrib>Fancey, Kevin S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fazal, Adnan</au><au>Fancey, Kevin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastically generated prestress from ultra-high molecular weight polyethylene fibres</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>48</volume><issue>16</issue><spage>5559</spage><epage>5570</epage><pages>5559-5570</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The viscoelastic characteristics of ultra-high molecular weight polyethylene (UHMWPE) fibres are investigated, in terms of creep-induced recovery strain and force output, to evaluate their potential for producing a novel form of prestressed composite. Composite production involves subjecting fibres to tensile creep, the applied load being removed before moulding the fibres into a resin matrix. After matrix curing, the viscoelastically strained fibres impart compressive stresses to the surrounding matrix, to produce a viscoelastically prestressed polymeric matrix composite (VPPMC). Previous research has demonstrated that nylon fibre-based VPPMCs can improve mechanical properties without needing to increase mass or section dimensions. The viability of UHMWPE fibre-based VPPMCs is demonstrated through flexural stiffness tests. Compared with control (unstressed) counterparts, these VPPMCs typically show increases of 20–40 % in flexural modulus. Studies on the viscoelastic characteristics indicate that these fibres can release mechanical energy over a long-timescale and fibre core–skin interactions may have an important role.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7350-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2013-08, Vol.48 (16), p.5559-5570
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1439760575
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Compressive properties
Creep (materials)
Crystallography and Scattering Methods
Curing
Fibers
Fibres
Materials Science
Mechanical properties
Modulus of rupture in bending
Molding (process)
Molecular weight
Polyethylene
Polyethylenes
Polymer Sciences
Prestressing
Solid Mechanics
Stiffness tests
Synthetic fibers industry
Tensile creep
Ultra high molecular weight polyethylene
Viability
Viscoelasticity
title Viscoelastically generated prestress from ultra-high molecular weight polyethylene fibres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastically%20generated%20prestress%20from%20ultra-high%20molecular%20weight%20polyethylene%20fibres&rft.jtitle=Journal%20of%20materials%20science&rft.au=Fazal,%20Adnan&rft.date=2013-08-01&rft.volume=48&rft.issue=16&rft.spage=5559&rft.epage=5570&rft.pages=5559-5570&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7350-5&rft_dat=%3Cgale_proqu%3EA339635981%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259727434&rft_id=info:pmid/&rft_galeid=A339635981&rfr_iscdi=true