Creep in an electrodeposited nickel

This paper reports the experimental results on the creep behavior of electrodeposited ultrafine-grained nickel and its particle-reinforced nanocomposite. The objective of this research was to further improve the knowledge of the creep behavior of monolithic nickel and to explore the role of nano-siz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2013-07, Vol.48 (13), p.4780-4788
Hauptverfasser: Sklenicka, Vaclav, Kucharova, Kveta, Kvapilova, Marie, Svoboda, Milan, Kral, Petr, Vidrich, Gabriele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4788
container_issue 13
container_start_page 4780
container_title Journal of materials science
container_volume 48
creator Sklenicka, Vaclav
Kucharova, Kveta
Kvapilova, Marie
Svoboda, Milan
Kral, Petr
Vidrich, Gabriele
description This paper reports the experimental results on the creep behavior of electrodeposited ultrafine-grained nickel and its particle-reinforced nanocomposite. The objective of this research was to further improve the knowledge of the creep behavior of monolithic nickel and to explore the role of nano-sized SiO 2 particles in the potential creep strengthening of electrodeposited Ni nanocomposite. The creep behavior and microstructure of the pure ultrafine-grained nickel and its nanocomposite reinforced by 2 vol% nano-sized SiO 2 particles were studied at temperatures in the range from 293 to 573 K and at the applied tensile stresses between 100 and 800 MPa. The results indicate that the creep resistance of the nanocomposite may be noticeably improved compared to the monolithic nickel due to the interaction of the particles with dislocation motion. It was found that the applied stress interval can be divided into lower and higher stress intervals corresponding to dislocation (power-law) and exponential creep regions, respectively. Analysis of the creep data leads to the suggestion that the creep behavior of both electrodeposited nickel and its nanocomposite in power-law region may be grain boundary controlled. However, the mechanism responsible for the observed creep behavior at lower temperatures and the highest stresses is still not well established.
doi_str_mv 10.1007/s10853-013-7209-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439760375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A373747613</galeid><sourcerecordid>A373747613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-1f27ecfdcf141bd9b18aea28a2d347b6c0306c2ef485f755d0036261e3ba697b3</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMoOKc_wLvCbvSi8yRpk-ZyDD8GguDHdUjTk9HZtTNpQf-9GRVkgpyLA4fnObzwEnJJYU4B5E2gUOQ8BcpTyUCl6ohMaC55mhXAj8kEgLGUZYKekrMQNgCQS0YnZLb0iLukbhPTJtig7X1X4a4LdY9V0tb2HZtzcuJME_DiZ0_J293t6_IhfXy6Xy0Xj6nNGOtT6phE6yrraEbLSpW0MGhYYVjFM1kKCxyEZeiyIncyzysALpigyEsjlCz5lFyNf3e--xgw9HpbB4tNY1rshqBpxpUUwGUe0dkfdNMNvo3pNGO5kowrJSI1H6m1aVDXret6b2ycCre17Vp0dbwvuOQyk4LyKFwfCJHp8bNfmyEEvXp5PmTpyFrfheDR6Z2vt8Z_aQp634keO9GxE73vRKvosNEJkW3X6H9j_y99A8AniwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259723996</pqid></control><display><type>article</type><title>Creep in an electrodeposited nickel</title><source>Springer Nature - Complete Springer Journals</source><creator>Sklenicka, Vaclav ; Kucharova, Kveta ; Kvapilova, Marie ; Svoboda, Milan ; Kral, Petr ; Vidrich, Gabriele</creator><creatorcontrib>Sklenicka, Vaclav ; Kucharova, Kveta ; Kvapilova, Marie ; Svoboda, Milan ; Kral, Petr ; Vidrich, Gabriele</creatorcontrib><description>This paper reports the experimental results on the creep behavior of electrodeposited ultrafine-grained nickel and its particle-reinforced nanocomposite. The objective of this research was to further improve the knowledge of the creep behavior of monolithic nickel and to explore the role of nano-sized SiO 2 particles in the potential creep strengthening of electrodeposited Ni nanocomposite. The creep behavior and microstructure of the pure ultrafine-grained nickel and its nanocomposite reinforced by 2 vol% nano-sized SiO 2 particles were studied at temperatures in the range from 293 to 573 K and at the applied tensile stresses between 100 and 800 MPa. The results indicate that the creep resistance of the nanocomposite may be noticeably improved compared to the monolithic nickel due to the interaction of the particles with dislocation motion. It was found that the applied stress interval can be divided into lower and higher stress intervals corresponding to dislocation (power-law) and exponential creep regions, respectively. Analysis of the creep data leads to the suggestion that the creep behavior of both electrodeposited nickel and its nanocomposite in power-law region may be grain boundary controlled. However, the mechanism responsible for the observed creep behavior at lower temperatures and the highest stresses is still not well established.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7209-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Creep (materials) ; Creep strength ; Crystallography and Scattering Methods ; Dislocations ; Grain boundaries ; Intervals ; Materials Science ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanostructured Materials ; Nickel ; Polymer Sciences ; Power law ; Silicon dioxide ; Solid Mechanics ; Stresses ; Ultrafines</subject><ispartof>Journal of materials science, 2013-07, Vol.48 (13), p.4780-4788</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-1f27ecfdcf141bd9b18aea28a2d347b6c0306c2ef485f755d0036261e3ba697b3</citedby><cites>FETCH-LOGICAL-c422t-1f27ecfdcf141bd9b18aea28a2d347b6c0306c2ef485f755d0036261e3ba697b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-013-7209-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-013-7209-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sklenicka, Vaclav</creatorcontrib><creatorcontrib>Kucharova, Kveta</creatorcontrib><creatorcontrib>Kvapilova, Marie</creatorcontrib><creatorcontrib>Svoboda, Milan</creatorcontrib><creatorcontrib>Kral, Petr</creatorcontrib><creatorcontrib>Vidrich, Gabriele</creatorcontrib><title>Creep in an electrodeposited nickel</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This paper reports the experimental results on the creep behavior of electrodeposited ultrafine-grained nickel and its particle-reinforced nanocomposite. The objective of this research was to further improve the knowledge of the creep behavior of monolithic nickel and to explore the role of nano-sized SiO 2 particles in the potential creep strengthening of electrodeposited Ni nanocomposite. The creep behavior and microstructure of the pure ultrafine-grained nickel and its nanocomposite reinforced by 2 vol% nano-sized SiO 2 particles were studied at temperatures in the range from 293 to 573 K and at the applied tensile stresses between 100 and 800 MPa. The results indicate that the creep resistance of the nanocomposite may be noticeably improved compared to the monolithic nickel due to the interaction of the particles with dislocation motion. It was found that the applied stress interval can be divided into lower and higher stress intervals corresponding to dislocation (power-law) and exponential creep regions, respectively. Analysis of the creep data leads to the suggestion that the creep behavior of both electrodeposited nickel and its nanocomposite in power-law region may be grain boundary controlled. However, the mechanism responsible for the observed creep behavior at lower temperatures and the highest stresses is still not well established.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Creep (materials)</subject><subject>Creep strength</subject><subject>Crystallography and Scattering Methods</subject><subject>Dislocations</subject><subject>Grain boundaries</subject><subject>Intervals</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanostructured Materials</subject><subject>Nickel</subject><subject>Polymer Sciences</subject><subject>Power law</subject><subject>Silicon dioxide</subject><subject>Solid Mechanics</subject><subject>Stresses</subject><subject>Ultrafines</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kV1LwzAUhoMoOKc_wLvCbvSi8yRpk-ZyDD8GguDHdUjTk9HZtTNpQf-9GRVkgpyLA4fnObzwEnJJYU4B5E2gUOQ8BcpTyUCl6ohMaC55mhXAj8kEgLGUZYKekrMQNgCQS0YnZLb0iLukbhPTJtig7X1X4a4LdY9V0tb2HZtzcuJME_DiZ0_J293t6_IhfXy6Xy0Xj6nNGOtT6phE6yrraEbLSpW0MGhYYVjFM1kKCxyEZeiyIncyzysALpigyEsjlCz5lFyNf3e--xgw9HpbB4tNY1rshqBpxpUUwGUe0dkfdNMNvo3pNGO5kowrJSI1H6m1aVDXret6b2ycCre17Vp0dbwvuOQyk4LyKFwfCJHp8bNfmyEEvXp5PmTpyFrfheDR6Z2vt8Z_aQp634keO9GxE73vRKvosNEJkW3X6H9j_y99A8AniwQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Sklenicka, Vaclav</creator><creator>Kucharova, Kveta</creator><creator>Kvapilova, Marie</creator><creator>Svoboda, Milan</creator><creator>Kral, Petr</creator><creator>Vidrich, Gabriele</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Creep in an electrodeposited nickel</title><author>Sklenicka, Vaclav ; Kucharova, Kveta ; Kvapilova, Marie ; Svoboda, Milan ; Kral, Petr ; Vidrich, Gabriele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-1f27ecfdcf141bd9b18aea28a2d347b6c0306c2ef485f755d0036261e3ba697b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Creep (materials)</topic><topic>Creep strength</topic><topic>Crystallography and Scattering Methods</topic><topic>Dislocations</topic><topic>Grain boundaries</topic><topic>Intervals</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanostructured Materials</topic><topic>Nickel</topic><topic>Polymer Sciences</topic><topic>Power law</topic><topic>Silicon dioxide</topic><topic>Solid Mechanics</topic><topic>Stresses</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sklenicka, Vaclav</creatorcontrib><creatorcontrib>Kucharova, Kveta</creatorcontrib><creatorcontrib>Kvapilova, Marie</creatorcontrib><creatorcontrib>Svoboda, Milan</creatorcontrib><creatorcontrib>Kral, Petr</creatorcontrib><creatorcontrib>Vidrich, Gabriele</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sklenicka, Vaclav</au><au>Kucharova, Kveta</au><au>Kvapilova, Marie</au><au>Svoboda, Milan</au><au>Kral, Petr</au><au>Vidrich, Gabriele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep in an electrodeposited nickel</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>48</volume><issue>13</issue><spage>4780</spage><epage>4788</epage><pages>4780-4788</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This paper reports the experimental results on the creep behavior of electrodeposited ultrafine-grained nickel and its particle-reinforced nanocomposite. The objective of this research was to further improve the knowledge of the creep behavior of monolithic nickel and to explore the role of nano-sized SiO 2 particles in the potential creep strengthening of electrodeposited Ni nanocomposite. The creep behavior and microstructure of the pure ultrafine-grained nickel and its nanocomposite reinforced by 2 vol% nano-sized SiO 2 particles were studied at temperatures in the range from 293 to 573 K and at the applied tensile stresses between 100 and 800 MPa. The results indicate that the creep resistance of the nanocomposite may be noticeably improved compared to the monolithic nickel due to the interaction of the particles with dislocation motion. It was found that the applied stress interval can be divided into lower and higher stress intervals corresponding to dislocation (power-law) and exponential creep regions, respectively. Analysis of the creep data leads to the suggestion that the creep behavior of both electrodeposited nickel and its nanocomposite in power-law region may be grain boundary controlled. However, the mechanism responsible for the observed creep behavior at lower temperatures and the highest stresses is still not well established.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7209-9</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2013-07, Vol.48 (13), p.4780-4788
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1439760375
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Creep (materials)
Creep strength
Crystallography and Scattering Methods
Dislocations
Grain boundaries
Intervals
Materials Science
Nanocomposites
Nanomaterials
Nanostructure
Nanostructured Materials
Nickel
Polymer Sciences
Power law
Silicon dioxide
Solid Mechanics
Stresses
Ultrafines
title Creep in an electrodeposited nickel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20in%20an%20electrodeposited%20nickel&rft.jtitle=Journal%20of%20materials%20science&rft.au=Sklenicka,%20Vaclav&rft.date=2013-07-01&rft.volume=48&rft.issue=13&rft.spage=4780&rft.epage=4788&rft.pages=4780-4788&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7209-9&rft_dat=%3Cgale_proqu%3EA373747613%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259723996&rft_id=info:pmid/&rft_galeid=A373747613&rfr_iscdi=true