Creep in an electrodeposited nickel
This paper reports the experimental results on the creep behavior of electrodeposited ultrafine-grained nickel and its particle-reinforced nanocomposite. The objective of this research was to further improve the knowledge of the creep behavior of monolithic nickel and to explore the role of nano-siz...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2013-07, Vol.48 (13), p.4780-4788 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4788 |
---|---|
container_issue | 13 |
container_start_page | 4780 |
container_title | Journal of materials science |
container_volume | 48 |
creator | Sklenicka, Vaclav Kucharova, Kveta Kvapilova, Marie Svoboda, Milan Kral, Petr Vidrich, Gabriele |
description | This paper reports the experimental results on the creep behavior of electrodeposited ultrafine-grained nickel and its particle-reinforced nanocomposite. The objective of this research was to further improve the knowledge of the creep behavior of monolithic nickel and to explore the role of nano-sized SiO
2
particles in the potential creep strengthening of electrodeposited Ni nanocomposite. The creep behavior and microstructure of the pure ultrafine-grained nickel and its nanocomposite reinforced by 2 vol% nano-sized SiO
2
particles were studied at temperatures in the range from 293 to 573 K and at the applied tensile stresses between 100 and 800 MPa. The results indicate that the creep resistance of the nanocomposite may be noticeably improved compared to the monolithic nickel due to the interaction of the particles with dislocation motion. It was found that the applied stress interval can be divided into lower and higher stress intervals corresponding to dislocation (power-law) and exponential creep regions, respectively. Analysis of the creep data leads to the suggestion that the creep behavior of both electrodeposited nickel and its nanocomposite in power-law region may be grain boundary controlled. However, the mechanism responsible for the observed creep behavior at lower temperatures and the highest stresses is still not well established. |
doi_str_mv | 10.1007/s10853-013-7209-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439760375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A373747613</galeid><sourcerecordid>A373747613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-1f27ecfdcf141bd9b18aea28a2d347b6c0306c2ef485f755d0036261e3ba697b3</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMoOKc_wLvCbvSi8yRpk-ZyDD8GguDHdUjTk9HZtTNpQf-9GRVkgpyLA4fnObzwEnJJYU4B5E2gUOQ8BcpTyUCl6ohMaC55mhXAj8kEgLGUZYKekrMQNgCQS0YnZLb0iLukbhPTJtig7X1X4a4LdY9V0tb2HZtzcuJME_DiZ0_J293t6_IhfXy6Xy0Xj6nNGOtT6phE6yrraEbLSpW0MGhYYVjFM1kKCxyEZeiyIncyzysALpigyEsjlCz5lFyNf3e--xgw9HpbB4tNY1rshqBpxpUUwGUe0dkfdNMNvo3pNGO5kowrJSI1H6m1aVDXret6b2ycCre17Vp0dbwvuOQyk4LyKFwfCJHp8bNfmyEEvXp5PmTpyFrfheDR6Z2vt8Z_aQp634keO9GxE73vRKvosNEJkW3X6H9j_y99A8AniwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259723996</pqid></control><display><type>article</type><title>Creep in an electrodeposited nickel</title><source>Springer Nature - Complete Springer Journals</source><creator>Sklenicka, Vaclav ; Kucharova, Kveta ; Kvapilova, Marie ; Svoboda, Milan ; Kral, Petr ; Vidrich, Gabriele</creator><creatorcontrib>Sklenicka, Vaclav ; Kucharova, Kveta ; Kvapilova, Marie ; Svoboda, Milan ; Kral, Petr ; Vidrich, Gabriele</creatorcontrib><description>This paper reports the experimental results on the creep behavior of electrodeposited ultrafine-grained nickel and its particle-reinforced nanocomposite. The objective of this research was to further improve the knowledge of the creep behavior of monolithic nickel and to explore the role of nano-sized SiO
2
particles in the potential creep strengthening of electrodeposited Ni nanocomposite. The creep behavior and microstructure of the pure ultrafine-grained nickel and its nanocomposite reinforced by 2 vol% nano-sized SiO
2
particles were studied at temperatures in the range from 293 to 573 K and at the applied tensile stresses between 100 and 800 MPa. The results indicate that the creep resistance of the nanocomposite may be noticeably improved compared to the monolithic nickel due to the interaction of the particles with dislocation motion. It was found that the applied stress interval can be divided into lower and higher stress intervals corresponding to dislocation (power-law) and exponential creep regions, respectively. Analysis of the creep data leads to the suggestion that the creep behavior of both electrodeposited nickel and its nanocomposite in power-law region may be grain boundary controlled. However, the mechanism responsible for the observed creep behavior at lower temperatures and the highest stresses is still not well established.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7209-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Creep (materials) ; Creep strength ; Crystallography and Scattering Methods ; Dislocations ; Grain boundaries ; Intervals ; Materials Science ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanostructured Materials ; Nickel ; Polymer Sciences ; Power law ; Silicon dioxide ; Solid Mechanics ; Stresses ; Ultrafines</subject><ispartof>Journal of materials science, 2013-07, Vol.48 (13), p.4780-4788</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-1f27ecfdcf141bd9b18aea28a2d347b6c0306c2ef485f755d0036261e3ba697b3</citedby><cites>FETCH-LOGICAL-c422t-1f27ecfdcf141bd9b18aea28a2d347b6c0306c2ef485f755d0036261e3ba697b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-013-7209-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-013-7209-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sklenicka, Vaclav</creatorcontrib><creatorcontrib>Kucharova, Kveta</creatorcontrib><creatorcontrib>Kvapilova, Marie</creatorcontrib><creatorcontrib>Svoboda, Milan</creatorcontrib><creatorcontrib>Kral, Petr</creatorcontrib><creatorcontrib>Vidrich, Gabriele</creatorcontrib><title>Creep in an electrodeposited nickel</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This paper reports the experimental results on the creep behavior of electrodeposited ultrafine-grained nickel and its particle-reinforced nanocomposite. The objective of this research was to further improve the knowledge of the creep behavior of monolithic nickel and to explore the role of nano-sized SiO
2
particles in the potential creep strengthening of electrodeposited Ni nanocomposite. The creep behavior and microstructure of the pure ultrafine-grained nickel and its nanocomposite reinforced by 2 vol% nano-sized SiO
2
particles were studied at temperatures in the range from 293 to 573 K and at the applied tensile stresses between 100 and 800 MPa. The results indicate that the creep resistance of the nanocomposite may be noticeably improved compared to the monolithic nickel due to the interaction of the particles with dislocation motion. It was found that the applied stress interval can be divided into lower and higher stress intervals corresponding to dislocation (power-law) and exponential creep regions, respectively. Analysis of the creep data leads to the suggestion that the creep behavior of both electrodeposited nickel and its nanocomposite in power-law region may be grain boundary controlled. However, the mechanism responsible for the observed creep behavior at lower temperatures and the highest stresses is still not well established.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Creep (materials)</subject><subject>Creep strength</subject><subject>Crystallography and Scattering Methods</subject><subject>Dislocations</subject><subject>Grain boundaries</subject><subject>Intervals</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanostructured Materials</subject><subject>Nickel</subject><subject>Polymer Sciences</subject><subject>Power law</subject><subject>Silicon dioxide</subject><subject>Solid Mechanics</subject><subject>Stresses</subject><subject>Ultrafines</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kV1LwzAUhoMoOKc_wLvCbvSi8yRpk-ZyDD8GguDHdUjTk9HZtTNpQf-9GRVkgpyLA4fnObzwEnJJYU4B5E2gUOQ8BcpTyUCl6ohMaC55mhXAj8kEgLGUZYKekrMQNgCQS0YnZLb0iLukbhPTJtig7X1X4a4LdY9V0tb2HZtzcuJME_DiZ0_J293t6_IhfXy6Xy0Xj6nNGOtT6phE6yrraEbLSpW0MGhYYVjFM1kKCxyEZeiyIncyzysALpigyEsjlCz5lFyNf3e--xgw9HpbB4tNY1rshqBpxpUUwGUe0dkfdNMNvo3pNGO5kowrJSI1H6m1aVDXret6b2ycCre17Vp0dbwvuOQyk4LyKFwfCJHp8bNfmyEEvXp5PmTpyFrfheDR6Z2vt8Z_aQp634keO9GxE73vRKvosNEJkW3X6H9j_y99A8AniwQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Sklenicka, Vaclav</creator><creator>Kucharova, Kveta</creator><creator>Kvapilova, Marie</creator><creator>Svoboda, Milan</creator><creator>Kral, Petr</creator><creator>Vidrich, Gabriele</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Creep in an electrodeposited nickel</title><author>Sklenicka, Vaclav ; Kucharova, Kveta ; Kvapilova, Marie ; Svoboda, Milan ; Kral, Petr ; Vidrich, Gabriele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-1f27ecfdcf141bd9b18aea28a2d347b6c0306c2ef485f755d0036261e3ba697b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Creep (materials)</topic><topic>Creep strength</topic><topic>Crystallography and Scattering Methods</topic><topic>Dislocations</topic><topic>Grain boundaries</topic><topic>Intervals</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanostructured Materials</topic><topic>Nickel</topic><topic>Polymer Sciences</topic><topic>Power law</topic><topic>Silicon dioxide</topic><topic>Solid Mechanics</topic><topic>Stresses</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sklenicka, Vaclav</creatorcontrib><creatorcontrib>Kucharova, Kveta</creatorcontrib><creatorcontrib>Kvapilova, Marie</creatorcontrib><creatorcontrib>Svoboda, Milan</creatorcontrib><creatorcontrib>Kral, Petr</creatorcontrib><creatorcontrib>Vidrich, Gabriele</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sklenicka, Vaclav</au><au>Kucharova, Kveta</au><au>Kvapilova, Marie</au><au>Svoboda, Milan</au><au>Kral, Petr</au><au>Vidrich, Gabriele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep in an electrodeposited nickel</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>48</volume><issue>13</issue><spage>4780</spage><epage>4788</epage><pages>4780-4788</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This paper reports the experimental results on the creep behavior of electrodeposited ultrafine-grained nickel and its particle-reinforced nanocomposite. The objective of this research was to further improve the knowledge of the creep behavior of monolithic nickel and to explore the role of nano-sized SiO
2
particles in the potential creep strengthening of electrodeposited Ni nanocomposite. The creep behavior and microstructure of the pure ultrafine-grained nickel and its nanocomposite reinforced by 2 vol% nano-sized SiO
2
particles were studied at temperatures in the range from 293 to 573 K and at the applied tensile stresses between 100 and 800 MPa. The results indicate that the creep resistance of the nanocomposite may be noticeably improved compared to the monolithic nickel due to the interaction of the particles with dislocation motion. It was found that the applied stress interval can be divided into lower and higher stress intervals corresponding to dislocation (power-law) and exponential creep regions, respectively. Analysis of the creep data leads to the suggestion that the creep behavior of both electrodeposited nickel and its nanocomposite in power-law region may be grain boundary controlled. However, the mechanism responsible for the observed creep behavior at lower temperatures and the highest stresses is still not well established.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7209-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2013-07, Vol.48 (13), p.4780-4788 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439760375 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Creep (materials) Creep strength Crystallography and Scattering Methods Dislocations Grain boundaries Intervals Materials Science Nanocomposites Nanomaterials Nanostructure Nanostructured Materials Nickel Polymer Sciences Power law Silicon dioxide Solid Mechanics Stresses Ultrafines |
title | Creep in an electrodeposited nickel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20in%20an%20electrodeposited%20nickel&rft.jtitle=Journal%20of%20materials%20science&rft.au=Sklenicka,%20Vaclav&rft.date=2013-07-01&rft.volume=48&rft.issue=13&rft.spage=4780&rft.epage=4788&rft.pages=4780-4788&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7209-9&rft_dat=%3Cgale_proqu%3EA373747613%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259723996&rft_id=info:pmid/&rft_galeid=A373747613&rfr_iscdi=true |