Pyrolytic carbons derived from water soluble polymers
Conductive pyrolytic carbon materials were obtained in wet impregnation process followed by controlled pyrolysis. Poly- N -vinylformamide (PNVF) as well as mixture of PNVF and pyromellitic acid (PMA) were applied as carbon precursors. Composition of carbon precursors was optimized in terms to obtain...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2013-07, Vol.113 (1), p.329-334 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 1 |
container_start_page | 329 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 113 |
creator | Molenda, M. Chojnacka, A. Natkański, P. Podstawka-Proniewicz, E. Kuśtrowski, P. Dziembaj, R. |
description | Conductive pyrolytic carbon materials were obtained in wet impregnation process followed by controlled pyrolysis. Poly-
N
-vinylformamide (PNVF) as well as mixture of PNVF and pyromellitic acid (PMA) were applied as carbon precursors. Composition of carbon precursors was optimized in terms to obtain best electrical properties of pyrolytic carbons. Mixture of PNVF and PMA as well as pure PNVF were deposited on the model alumina (α-Al
2
O
3
) support to form conductive carbon layers (CCL). The optimal composition of the polymer precursors was determined by Raman spectra and electrical conductivity measurements. The carbonization conditions were optimized using complementary thermal analysis methods (EGA(FTIR)–TG/DTG/STDA). It was found that the addition of PMA to polymer precursor PNVF decreases temperature of formation of condensed graphene structures, domains of electrical conductivity, thus, the formation temperature of pyrolytic carbons with desired electrical properties may be decreased. |
doi_str_mv | 10.1007/s10973-013-3212-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439760003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A344949280</galeid><sourcerecordid>A344949280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-c73b134a06b3ad5871b55ab65feb9ae96ca1fa21a8376f0288b47466127113e83</originalsourceid><addsrcrecordid>eNp9kctqHTEMhofQQkOaB-huNoV2Mallj2_LENomEEjoZW00PvLBYWZ8as-0PW9fhwmBbIoWEtL3C6G_ad4BuwDG9KcCzGrRMRCd4MA7ftKcgjSm45arV7UWtVYg2ZvmvJQ4MA5MWWnsaSPvjzmNxyX61mMe0lzaHeX4m3ZtyGlq_-BCuS1pXIeR2kNFJ8rlbfM64Fjo_CmfNT-_fP5xdd3d3n29ubq87Xyv9NJ5LQYQPTI1CNxJo2GQEgclAw0WySqPEJADGqFVYNyYode9UsA1gCAjzpoP295DTr9WKoubYvE0jjhTWouDXlitGGOiohcbuseRXJxDWjL6Gjuaok8zhVj7l6LvbW-5YVXw8YWgMgv9Xfa4luJuvn97ycLG-pxKyRTcIccJ89EBc48WuM0CVy1wjxY4XjXvn27H4nEMGWcfy7OQa2UtGFk5vnGljuY9ZfeQ1jzXt_5n-T8aqZOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439760003</pqid></control><display><type>article</type><title>Pyrolytic carbons derived from water soluble polymers</title><source>SpringerNature Journals</source><creator>Molenda, M. ; Chojnacka, A. ; Natkański, P. ; Podstawka-Proniewicz, E. ; Kuśtrowski, P. ; Dziembaj, R.</creator><creatorcontrib>Molenda, M. ; Chojnacka, A. ; Natkański, P. ; Podstawka-Proniewicz, E. ; Kuśtrowski, P. ; Dziembaj, R.</creatorcontrib><description>Conductive pyrolytic carbon materials were obtained in wet impregnation process followed by controlled pyrolysis. Poly-
N
-vinylformamide (PNVF) as well as mixture of PNVF and pyromellitic acid (PMA) were applied as carbon precursors. Composition of carbon precursors was optimized in terms to obtain best electrical properties of pyrolytic carbons. Mixture of PNVF and PMA as well as pure PNVF were deposited on the model alumina (α-Al
2
O
3
) support to form conductive carbon layers (CCL). The optimal composition of the polymer precursors was determined by Raman spectra and electrical conductivity measurements. The carbonization conditions were optimized using complementary thermal analysis methods (EGA(FTIR)–TG/DTG/STDA). It was found that the addition of PMA to polymer precursor PNVF decreases temperature of formation of condensed graphene structures, domains of electrical conductivity, thus, the formation temperature of pyrolytic carbons with desired electrical properties may be decreased.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>EISSN: 1572-8943</identifier><identifier>DOI: 10.1007/s10973-013-3212-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum oxide ; Analysis ; Analytical Chemistry ; Carbon ; Chemistry ; Chemistry and Materials Science ; Electric properties ; Electrical conductivity ; Electrical properties ; Electrical resistivity ; Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...) ; Exact sciences and technology ; Graphene ; Inorganic Chemistry ; Inorganic chemistry and origins of life ; Measurement Science and Instrumentation ; Physical Chemistry ; Polymer Sciences ; Precursors ; Preparations and properties ; Pyrolysis ; Raman spectroscopy ; Resistivity ; Thermal analysis ; Water-soluble polymers</subject><ispartof>Journal of thermal analysis and calorimetry, 2013-07, Vol.113 (1), p.329-334</ispartof><rights>The Author(s) 2013</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-c73b134a06b3ad5871b55ab65feb9ae96ca1fa21a8376f0288b47466127113e83</citedby><cites>FETCH-LOGICAL-c467t-c73b134a06b3ad5871b55ab65feb9ae96ca1fa21a8376f0288b47466127113e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-013-3212-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-013-3212-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27699185$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Molenda, M.</creatorcontrib><creatorcontrib>Chojnacka, A.</creatorcontrib><creatorcontrib>Natkański, P.</creatorcontrib><creatorcontrib>Podstawka-Proniewicz, E.</creatorcontrib><creatorcontrib>Kuśtrowski, P.</creatorcontrib><creatorcontrib>Dziembaj, R.</creatorcontrib><title>Pyrolytic carbons derived from water soluble polymers</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Conductive pyrolytic carbon materials were obtained in wet impregnation process followed by controlled pyrolysis. Poly-
N
-vinylformamide (PNVF) as well as mixture of PNVF and pyromellitic acid (PMA) were applied as carbon precursors. Composition of carbon precursors was optimized in terms to obtain best electrical properties of pyrolytic carbons. Mixture of PNVF and PMA as well as pure PNVF were deposited on the model alumina (α-Al
2
O
3
) support to form conductive carbon layers (CCL). The optimal composition of the polymer precursors was determined by Raman spectra and electrical conductivity measurements. The carbonization conditions were optimized using complementary thermal analysis methods (EGA(FTIR)–TG/DTG/STDA). It was found that the addition of PMA to polymer precursor PNVF decreases temperature of formation of condensed graphene structures, domains of electrical conductivity, thus, the formation temperature of pyrolytic carbons with desired electrical properties may be decreased.</description><subject>Aluminum oxide</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...)</subject><subject>Exact sciences and technology</subject><subject>Graphene</subject><subject>Inorganic Chemistry</subject><subject>Inorganic chemistry and origins of life</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Precursors</subject><subject>Preparations and properties</subject><subject>Pyrolysis</subject><subject>Raman spectroscopy</subject><subject>Resistivity</subject><subject>Thermal analysis</subject><subject>Water-soluble polymers</subject><issn>1388-6150</issn><issn>1588-2926</issn><issn>1572-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctqHTEMhofQQkOaB-huNoV2Mallj2_LENomEEjoZW00PvLBYWZ8as-0PW9fhwmBbIoWEtL3C6G_ad4BuwDG9KcCzGrRMRCd4MA7ftKcgjSm45arV7UWtVYg2ZvmvJQ4MA5MWWnsaSPvjzmNxyX61mMe0lzaHeX4m3ZtyGlq_-BCuS1pXIeR2kNFJ8rlbfM64Fjo_CmfNT-_fP5xdd3d3n29ubq87Xyv9NJ5LQYQPTI1CNxJo2GQEgclAw0WySqPEJADGqFVYNyYode9UsA1gCAjzpoP295DTr9WKoubYvE0jjhTWouDXlitGGOiohcbuseRXJxDWjL6Gjuaok8zhVj7l6LvbW-5YVXw8YWgMgv9Xfa4luJuvn97ycLG-pxKyRTcIccJ89EBc48WuM0CVy1wjxY4XjXvn27H4nEMGWcfy7OQa2UtGFk5vnGljuY9ZfeQ1jzXt_5n-T8aqZOY</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Molenda, M.</creator><creator>Chojnacka, A.</creator><creator>Natkański, P.</creator><creator>Podstawka-Proniewicz, E.</creator><creator>Kuśtrowski, P.</creator><creator>Dziembaj, R.</creator><general>Springer Netherlands</general><general>Springer</general><scope>C6C</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Pyrolytic carbons derived from water soluble polymers</title><author>Molenda, M. ; Chojnacka, A. ; Natkański, P. ; Podstawka-Proniewicz, E. ; Kuśtrowski, P. ; Dziembaj, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-c73b134a06b3ad5871b55ab65feb9ae96ca1fa21a8376f0288b47466127113e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum oxide</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...)</topic><topic>Exact sciences and technology</topic><topic>Graphene</topic><topic>Inorganic Chemistry</topic><topic>Inorganic chemistry and origins of life</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Precursors</topic><topic>Preparations and properties</topic><topic>Pyrolysis</topic><topic>Raman spectroscopy</topic><topic>Resistivity</topic><topic>Thermal analysis</topic><topic>Water-soluble polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molenda, M.</creatorcontrib><creatorcontrib>Chojnacka, A.</creatorcontrib><creatorcontrib>Natkański, P.</creatorcontrib><creatorcontrib>Podstawka-Proniewicz, E.</creatorcontrib><creatorcontrib>Kuśtrowski, P.</creatorcontrib><creatorcontrib>Dziembaj, R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molenda, M.</au><au>Chojnacka, A.</au><au>Natkański, P.</au><au>Podstawka-Proniewicz, E.</au><au>Kuśtrowski, P.</au><au>Dziembaj, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyrolytic carbons derived from water soluble polymers</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>113</volume><issue>1</issue><spage>329</spage><epage>334</epage><pages>329-334</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><eissn>1572-8943</eissn><abstract>Conductive pyrolytic carbon materials were obtained in wet impregnation process followed by controlled pyrolysis. Poly-
N
-vinylformamide (PNVF) as well as mixture of PNVF and pyromellitic acid (PMA) were applied as carbon precursors. Composition of carbon precursors was optimized in terms to obtain best electrical properties of pyrolytic carbons. Mixture of PNVF and PMA as well as pure PNVF were deposited on the model alumina (α-Al
2
O
3
) support to form conductive carbon layers (CCL). The optimal composition of the polymer precursors was determined by Raman spectra and electrical conductivity measurements. The carbonization conditions were optimized using complementary thermal analysis methods (EGA(FTIR)–TG/DTG/STDA). It was found that the addition of PMA to polymer precursor PNVF decreases temperature of formation of condensed graphene structures, domains of electrical conductivity, thus, the formation temperature of pyrolytic carbons with desired electrical properties may be decreased.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-013-3212-2</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2013-07, Vol.113 (1), p.329-334 |
issn | 1388-6150 1588-2926 1572-8943 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439760003 |
source | SpringerNature Journals |
subjects | Aluminum oxide Analysis Analytical Chemistry Carbon Chemistry Chemistry and Materials Science Electric properties Electrical conductivity Electrical properties Electrical resistivity Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...) Exact sciences and technology Graphene Inorganic Chemistry Inorganic chemistry and origins of life Measurement Science and Instrumentation Physical Chemistry Polymer Sciences Precursors Preparations and properties Pyrolysis Raman spectroscopy Resistivity Thermal analysis Water-soluble polymers |
title | Pyrolytic carbons derived from water soluble polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyrolytic%20carbons%20derived%20from%20water%20soluble%20polymers&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Molenda,%20M.&rft.date=2013-07-01&rft.volume=113&rft.issue=1&rft.spage=329&rft.epage=334&rft.pages=329-334&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-013-3212-2&rft_dat=%3Cgale_proqu%3EA344949280%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439760003&rft_id=info:pmid/&rft_galeid=A344949280&rfr_iscdi=true |