Pyrolytic carbons derived from water soluble polymers

Conductive pyrolytic carbon materials were obtained in wet impregnation process followed by controlled pyrolysis. Poly- N -vinylformamide (PNVF) as well as mixture of PNVF and pyromellitic acid (PMA) were applied as carbon precursors. Composition of carbon precursors was optimized in terms to obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2013-07, Vol.113 (1), p.329-334
Hauptverfasser: Molenda, M., Chojnacka, A., Natkański, P., Podstawka-Proniewicz, E., Kuśtrowski, P., Dziembaj, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 1
container_start_page 329
container_title Journal of thermal analysis and calorimetry
container_volume 113
creator Molenda, M.
Chojnacka, A.
Natkański, P.
Podstawka-Proniewicz, E.
Kuśtrowski, P.
Dziembaj, R.
description Conductive pyrolytic carbon materials were obtained in wet impregnation process followed by controlled pyrolysis. Poly- N -vinylformamide (PNVF) as well as mixture of PNVF and pyromellitic acid (PMA) were applied as carbon precursors. Composition of carbon precursors was optimized in terms to obtain best electrical properties of pyrolytic carbons. Mixture of PNVF and PMA as well as pure PNVF were deposited on the model alumina (α-Al 2 O 3 ) support to form conductive carbon layers (CCL). The optimal composition of the polymer precursors was determined by Raman spectra and electrical conductivity measurements. The carbonization conditions were optimized using complementary thermal analysis methods (EGA(FTIR)–TG/DTG/STDA). It was found that the addition of PMA to polymer precursor PNVF decreases temperature of formation of condensed graphene structures, domains of electrical conductivity, thus, the formation temperature of pyrolytic carbons with desired electrical properties may be decreased.
doi_str_mv 10.1007/s10973-013-3212-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439760003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A344949280</galeid><sourcerecordid>A344949280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-c73b134a06b3ad5871b55ab65feb9ae96ca1fa21a8376f0288b47466127113e83</originalsourceid><addsrcrecordid>eNp9kctqHTEMhofQQkOaB-huNoV2Mallj2_LENomEEjoZW00PvLBYWZ8as-0PW9fhwmBbIoWEtL3C6G_ad4BuwDG9KcCzGrRMRCd4MA7ftKcgjSm45arV7UWtVYg2ZvmvJQ4MA5MWWnsaSPvjzmNxyX61mMe0lzaHeX4m3ZtyGlq_-BCuS1pXIeR2kNFJ8rlbfM64Fjo_CmfNT-_fP5xdd3d3n29ubq87Xyv9NJ5LQYQPTI1CNxJo2GQEgclAw0WySqPEJADGqFVYNyYode9UsA1gCAjzpoP295DTr9WKoubYvE0jjhTWouDXlitGGOiohcbuseRXJxDWjL6Gjuaok8zhVj7l6LvbW-5YVXw8YWgMgv9Xfa4luJuvn97ycLG-pxKyRTcIccJ89EBc48WuM0CVy1wjxY4XjXvn27H4nEMGWcfy7OQa2UtGFk5vnGljuY9ZfeQ1jzXt_5n-T8aqZOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439760003</pqid></control><display><type>article</type><title>Pyrolytic carbons derived from water soluble polymers</title><source>SpringerNature Journals</source><creator>Molenda, M. ; Chojnacka, A. ; Natkański, P. ; Podstawka-Proniewicz, E. ; Kuśtrowski, P. ; Dziembaj, R.</creator><creatorcontrib>Molenda, M. ; Chojnacka, A. ; Natkański, P. ; Podstawka-Proniewicz, E. ; Kuśtrowski, P. ; Dziembaj, R.</creatorcontrib><description>Conductive pyrolytic carbon materials were obtained in wet impregnation process followed by controlled pyrolysis. Poly- N -vinylformamide (PNVF) as well as mixture of PNVF and pyromellitic acid (PMA) were applied as carbon precursors. Composition of carbon precursors was optimized in terms to obtain best electrical properties of pyrolytic carbons. Mixture of PNVF and PMA as well as pure PNVF were deposited on the model alumina (α-Al 2 O 3 ) support to form conductive carbon layers (CCL). The optimal composition of the polymer precursors was determined by Raman spectra and electrical conductivity measurements. The carbonization conditions were optimized using complementary thermal analysis methods (EGA(FTIR)–TG/DTG/STDA). It was found that the addition of PMA to polymer precursor PNVF decreases temperature of formation of condensed graphene structures, domains of electrical conductivity, thus, the formation temperature of pyrolytic carbons with desired electrical properties may be decreased.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>EISSN: 1572-8943</identifier><identifier>DOI: 10.1007/s10973-013-3212-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum oxide ; Analysis ; Analytical Chemistry ; Carbon ; Chemistry ; Chemistry and Materials Science ; Electric properties ; Electrical conductivity ; Electrical properties ; Electrical resistivity ; Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...) ; Exact sciences and technology ; Graphene ; Inorganic Chemistry ; Inorganic chemistry and origins of life ; Measurement Science and Instrumentation ; Physical Chemistry ; Polymer Sciences ; Precursors ; Preparations and properties ; Pyrolysis ; Raman spectroscopy ; Resistivity ; Thermal analysis ; Water-soluble polymers</subject><ispartof>Journal of thermal analysis and calorimetry, 2013-07, Vol.113 (1), p.329-334</ispartof><rights>The Author(s) 2013</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-c73b134a06b3ad5871b55ab65feb9ae96ca1fa21a8376f0288b47466127113e83</citedby><cites>FETCH-LOGICAL-c467t-c73b134a06b3ad5871b55ab65feb9ae96ca1fa21a8376f0288b47466127113e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-013-3212-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-013-3212-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27699185$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Molenda, M.</creatorcontrib><creatorcontrib>Chojnacka, A.</creatorcontrib><creatorcontrib>Natkański, P.</creatorcontrib><creatorcontrib>Podstawka-Proniewicz, E.</creatorcontrib><creatorcontrib>Kuśtrowski, P.</creatorcontrib><creatorcontrib>Dziembaj, R.</creatorcontrib><title>Pyrolytic carbons derived from water soluble polymers</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Conductive pyrolytic carbon materials were obtained in wet impregnation process followed by controlled pyrolysis. Poly- N -vinylformamide (PNVF) as well as mixture of PNVF and pyromellitic acid (PMA) were applied as carbon precursors. Composition of carbon precursors was optimized in terms to obtain best electrical properties of pyrolytic carbons. Mixture of PNVF and PMA as well as pure PNVF were deposited on the model alumina (α-Al 2 O 3 ) support to form conductive carbon layers (CCL). The optimal composition of the polymer precursors was determined by Raman spectra and electrical conductivity measurements. The carbonization conditions were optimized using complementary thermal analysis methods (EGA(FTIR)–TG/DTG/STDA). It was found that the addition of PMA to polymer precursor PNVF decreases temperature of formation of condensed graphene structures, domains of electrical conductivity, thus, the formation temperature of pyrolytic carbons with desired electrical properties may be decreased.</description><subject>Aluminum oxide</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...)</subject><subject>Exact sciences and technology</subject><subject>Graphene</subject><subject>Inorganic Chemistry</subject><subject>Inorganic chemistry and origins of life</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Precursors</subject><subject>Preparations and properties</subject><subject>Pyrolysis</subject><subject>Raman spectroscopy</subject><subject>Resistivity</subject><subject>Thermal analysis</subject><subject>Water-soluble polymers</subject><issn>1388-6150</issn><issn>1588-2926</issn><issn>1572-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctqHTEMhofQQkOaB-huNoV2Mallj2_LENomEEjoZW00PvLBYWZ8as-0PW9fhwmBbIoWEtL3C6G_ad4BuwDG9KcCzGrRMRCd4MA7ftKcgjSm45arV7UWtVYg2ZvmvJQ4MA5MWWnsaSPvjzmNxyX61mMe0lzaHeX4m3ZtyGlq_-BCuS1pXIeR2kNFJ8rlbfM64Fjo_CmfNT-_fP5xdd3d3n29ubq87Xyv9NJ5LQYQPTI1CNxJo2GQEgclAw0WySqPEJADGqFVYNyYode9UsA1gCAjzpoP295DTr9WKoubYvE0jjhTWouDXlitGGOiohcbuseRXJxDWjL6Gjuaok8zhVj7l6LvbW-5YVXw8YWgMgv9Xfa4luJuvn97ycLG-pxKyRTcIccJ89EBc48WuM0CVy1wjxY4XjXvn27H4nEMGWcfy7OQa2UtGFk5vnGljuY9ZfeQ1jzXt_5n-T8aqZOY</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Molenda, M.</creator><creator>Chojnacka, A.</creator><creator>Natkański, P.</creator><creator>Podstawka-Proniewicz, E.</creator><creator>Kuśtrowski, P.</creator><creator>Dziembaj, R.</creator><general>Springer Netherlands</general><general>Springer</general><scope>C6C</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Pyrolytic carbons derived from water soluble polymers</title><author>Molenda, M. ; Chojnacka, A. ; Natkański, P. ; Podstawka-Proniewicz, E. ; Kuśtrowski, P. ; Dziembaj, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-c73b134a06b3ad5871b55ab65feb9ae96ca1fa21a8376f0288b47466127113e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum oxide</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...)</topic><topic>Exact sciences and technology</topic><topic>Graphene</topic><topic>Inorganic Chemistry</topic><topic>Inorganic chemistry and origins of life</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Precursors</topic><topic>Preparations and properties</topic><topic>Pyrolysis</topic><topic>Raman spectroscopy</topic><topic>Resistivity</topic><topic>Thermal analysis</topic><topic>Water-soluble polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molenda, M.</creatorcontrib><creatorcontrib>Chojnacka, A.</creatorcontrib><creatorcontrib>Natkański, P.</creatorcontrib><creatorcontrib>Podstawka-Proniewicz, E.</creatorcontrib><creatorcontrib>Kuśtrowski, P.</creatorcontrib><creatorcontrib>Dziembaj, R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molenda, M.</au><au>Chojnacka, A.</au><au>Natkański, P.</au><au>Podstawka-Proniewicz, E.</au><au>Kuśtrowski, P.</au><au>Dziembaj, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyrolytic carbons derived from water soluble polymers</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>113</volume><issue>1</issue><spage>329</spage><epage>334</epage><pages>329-334</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><eissn>1572-8943</eissn><abstract>Conductive pyrolytic carbon materials were obtained in wet impregnation process followed by controlled pyrolysis. Poly- N -vinylformamide (PNVF) as well as mixture of PNVF and pyromellitic acid (PMA) were applied as carbon precursors. Composition of carbon precursors was optimized in terms to obtain best electrical properties of pyrolytic carbons. Mixture of PNVF and PMA as well as pure PNVF were deposited on the model alumina (α-Al 2 O 3 ) support to form conductive carbon layers (CCL). The optimal composition of the polymer precursors was determined by Raman spectra and electrical conductivity measurements. The carbonization conditions were optimized using complementary thermal analysis methods (EGA(FTIR)–TG/DTG/STDA). It was found that the addition of PMA to polymer precursor PNVF decreases temperature of formation of condensed graphene structures, domains of electrical conductivity, thus, the formation temperature of pyrolytic carbons with desired electrical properties may be decreased.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-013-3212-2</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2013-07, Vol.113 (1), p.329-334
issn 1388-6150
1588-2926
1572-8943
language eng
recordid cdi_proquest_miscellaneous_1439760003
source SpringerNature Journals
subjects Aluminum oxide
Analysis
Analytical Chemistry
Carbon
Chemistry
Chemistry and Materials Science
Electric properties
Electrical conductivity
Electrical properties
Electrical resistivity
Elements and non-metal compounds (oxides, hydroxides, hydrides, sulfides, carbides, ...)
Exact sciences and technology
Graphene
Inorganic Chemistry
Inorganic chemistry and origins of life
Measurement Science and Instrumentation
Physical Chemistry
Polymer Sciences
Precursors
Preparations and properties
Pyrolysis
Raman spectroscopy
Resistivity
Thermal analysis
Water-soluble polymers
title Pyrolytic carbons derived from water soluble polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyrolytic%20carbons%20derived%20from%20water%20soluble%20polymers&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Molenda,%20M.&rft.date=2013-07-01&rft.volume=113&rft.issue=1&rft.spage=329&rft.epage=334&rft.pages=329-334&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-013-3212-2&rft_dat=%3Cgale_proqu%3EA344949280%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439760003&rft_id=info:pmid/&rft_galeid=A344949280&rfr_iscdi=true