Analytical model for the dispersion of sub-threshold current in organic thin-film transistors
This paper proposes an equivalent circuit model to analyze the reason for the dispersion of sub-threshold current (also known as zero-current point dispersion) in organic thin-film transistors. Based on the level 61 amorphous silicon thin-film transistor model in star-HSPICE, the results from our eq...
Gespeichert in:
Veröffentlicht in: | Journal of semiconductors 2011-11, Vol.32 (11), p.55-59 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 11 |
container_start_page | 55 |
container_title | Journal of semiconductors |
container_volume | 32 |
creator | 陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明 |
description | This paper proposes an equivalent circuit model to analyze the reason for the dispersion of sub-threshold current (also known as zero-current point dispersion) in organic thin-film transistors. Based on the level 61 amorphous silicon thin-film transistor model in star-HSPICE, the results from our equivalent circuit model simulation reveal that zero-current point dispersion can be attributed to two factors: large contact resistance and small gate resistance. Furthermore, it is found that decreasing the contact resistance and increasing the gate resistance can efficiently reduce the dispersion. If the contact resistance can be controlled to 0 g2, all the zero-current points can gather together at the base point. A large gate resistance is good for constraining the dispersion of the zero-current points and gate leakage. The variances of the zero-current points are 0.0057 and nearly 0 when the gate resistances are 17 MΩ and 276 MΩ, respectively. |
doi_str_mv | 10.1088/1674-4926/32/11/114004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_chong</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439759387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39822431</cqvip_id><sourcerecordid>1439759387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-67ecc906f01e133fc6b83f5d3750ce4651d18f86e918af07fda27e13413a4d6d3</originalsourceid><addsrcrecordid>eNqFkD1rwzAURT200JDmLxR16-JGz5JleQyhXxDo0o5FKPqIBbbkSPaQf1-HhHQJFARvuOc8PW6WPQB-Bsz5ElhFc1oXbEmKJcD0KMb0JptdgrtskZLbYlxzTqZwlv2svGwPg1OyRV3QpkU2RDQ0BmmXehOTCx4Fi9K4zYcmmtSEViM1xmj8gNyUxZ30Tk2K87l1bYeGKH1yaQgx3We3VrbJLM5znn2_vnyt3_PN59vHerXJFaEw5KwyStWYWQwGCLGKbTmxpSZViZWhrAQN3HJmauDS4spqWVQTSYFIqpkm8-zptLePYT-aNIjOJWXaVnoTxiSAkroqa8KrCWUnVMWQUjRW9NF1Mh4EYHGsURzbEse2BCkEgDjVOIn5SXSh_3OusqLXduLhCv_fH4_n45rgd3vndxeT1LwoKAHyC5D7j9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439759387</pqid></control><display><type>article</type><title>Analytical model for the dispersion of sub-threshold current in organic thin-film transistors</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</creator><creatorcontrib>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</creatorcontrib><description>This paper proposes an equivalent circuit model to analyze the reason for the dispersion of sub-threshold current (also known as zero-current point dispersion) in organic thin-film transistors. Based on the level 61 amorphous silicon thin-film transistor model in star-HSPICE, the results from our equivalent circuit model simulation reveal that zero-current point dispersion can be attributed to two factors: large contact resistance and small gate resistance. Furthermore, it is found that decreasing the contact resistance and increasing the gate resistance can efficiently reduce the dispersion. If the contact resistance can be controlled to 0 g2, all the zero-current points can gather together at the base point. A large gate resistance is good for constraining the dispersion of the zero-current points and gate leakage. The variances of the zero-current points are 0.0057 and nearly 0 when the gate resistances are 17 MΩ and 276 MΩ, respectively.</description><identifier>ISSN: 1674-4926</identifier><identifier>DOI: 10.1088/1674-4926/32/11/114004</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Constraining ; Contact resistance ; Dispersions ; Equivalent circuits ; Gates (circuits) ; HSPICE ; Semiconductor devices ; Semiconductors ; Thin films ; Transistors ; 亚阈值电流 ; 分散性 ; 接触电阻 ; 晶体管模型 ; 有机薄膜晶体管 ; 等效电路模型 ; 零电流</subject><ispartof>Journal of semiconductors, 2011-11, Vol.32 (11), p.55-59</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-67ecc906f01e133fc6b83f5d3750ce4651d18f86e918af07fda27e13413a4d6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/94689X/94689X.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-4926/32/11/114004/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53888</link.rule.ids></links><search><creatorcontrib>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</creatorcontrib><title>Analytical model for the dispersion of sub-threshold current in organic thin-film transistors</title><title>Journal of semiconductors</title><addtitle>Chinese Journal of Semiconductors</addtitle><description>This paper proposes an equivalent circuit model to analyze the reason for the dispersion of sub-threshold current (also known as zero-current point dispersion) in organic thin-film transistors. Based on the level 61 amorphous silicon thin-film transistor model in star-HSPICE, the results from our equivalent circuit model simulation reveal that zero-current point dispersion can be attributed to two factors: large contact resistance and small gate resistance. Furthermore, it is found that decreasing the contact resistance and increasing the gate resistance can efficiently reduce the dispersion. If the contact resistance can be controlled to 0 g2, all the zero-current points can gather together at the base point. A large gate resistance is good for constraining the dispersion of the zero-current points and gate leakage. The variances of the zero-current points are 0.0057 and nearly 0 when the gate resistances are 17 MΩ and 276 MΩ, respectively.</description><subject>Constraining</subject><subject>Contact resistance</subject><subject>Dispersions</subject><subject>Equivalent circuits</subject><subject>Gates (circuits)</subject><subject>HSPICE</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Thin films</subject><subject>Transistors</subject><subject>亚阈值电流</subject><subject>分散性</subject><subject>接触电阻</subject><subject>晶体管模型</subject><subject>有机薄膜晶体管</subject><subject>等效电路模型</subject><subject>零电流</subject><issn>1674-4926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkD1rwzAURT200JDmLxR16-JGz5JleQyhXxDo0o5FKPqIBbbkSPaQf1-HhHQJFARvuOc8PW6WPQB-Bsz5ElhFc1oXbEmKJcD0KMb0JptdgrtskZLbYlxzTqZwlv2svGwPg1OyRV3QpkU2RDQ0BmmXehOTCx4Fi9K4zYcmmtSEViM1xmj8gNyUxZ30Tk2K87l1bYeGKH1yaQgx3We3VrbJLM5znn2_vnyt3_PN59vHerXJFaEw5KwyStWYWQwGCLGKbTmxpSZViZWhrAQN3HJmauDS4spqWVQTSYFIqpkm8-zptLePYT-aNIjOJWXaVnoTxiSAkroqa8KrCWUnVMWQUjRW9NF1Mh4EYHGsURzbEse2BCkEgDjVOIn5SXSh_3OusqLXduLhCv_fH4_n45rgd3vndxeT1LwoKAHyC5D7j9g</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</creator><general>IOP Publishing</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>Analytical model for the dispersion of sub-threshold current in organic thin-film transistors</title><author>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-67ecc906f01e133fc6b83f5d3750ce4651d18f86e918af07fda27e13413a4d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Constraining</topic><topic>Contact resistance</topic><topic>Dispersions</topic><topic>Equivalent circuits</topic><topic>Gates (circuits)</topic><topic>HSPICE</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Thin films</topic><topic>Transistors</topic><topic>亚阈值电流</topic><topic>分散性</topic><topic>接触电阻</topic><topic>晶体管模型</topic><topic>有机薄膜晶体管</topic><topic>等效电路模型</topic><topic>零电流</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of semiconductors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical model for the dispersion of sub-threshold current in organic thin-film transistors</atitle><jtitle>Journal of semiconductors</jtitle><addtitle>Chinese Journal of Semiconductors</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>32</volume><issue>11</issue><spage>55</spage><epage>59</epage><pages>55-59</pages><issn>1674-4926</issn><abstract>This paper proposes an equivalent circuit model to analyze the reason for the dispersion of sub-threshold current (also known as zero-current point dispersion) in organic thin-film transistors. Based on the level 61 amorphous silicon thin-film transistor model in star-HSPICE, the results from our equivalent circuit model simulation reveal that zero-current point dispersion can be attributed to two factors: large contact resistance and small gate resistance. Furthermore, it is found that decreasing the contact resistance and increasing the gate resistance can efficiently reduce the dispersion. If the contact resistance can be controlled to 0 g2, all the zero-current points can gather together at the base point. A large gate resistance is good for constraining the dispersion of the zero-current points and gate leakage. The variances of the zero-current points are 0.0057 and nearly 0 when the gate resistances are 17 MΩ and 276 MΩ, respectively.</abstract><pub>IOP Publishing</pub><doi>10.1088/1674-4926/32/11/114004</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4926 |
ispartof | Journal of semiconductors, 2011-11, Vol.32 (11), p.55-59 |
issn | 1674-4926 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439759387 |
source | IOP Publishing Journals; Alma/SFX Local Collection |
subjects | Constraining Contact resistance Dispersions Equivalent circuits Gates (circuits) HSPICE Semiconductor devices Semiconductors Thin films Transistors 亚阈值电流 分散性 接触电阻 晶体管模型 有机薄膜晶体管 等效电路模型 零电流 |
title | Analytical model for the dispersion of sub-threshold current in organic thin-film transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20model%20for%20the%20dispersion%20of%20sub-threshold%20current%20in%20organic%20thin-film%20transistors&rft.jtitle=Journal%20of%20semiconductors&rft.au=%E9%99%88%E6%98%A0%E5%B9%B3%20%E5%95%86%E7%AB%8B%E4%BC%9F%20%E5%A7%AC%E6%BF%AF%E5%AE%87%20%E7%8E%8B%E5%AE%8F%20%E9%9F%A9%E4%B9%B0%E5%85%B4%20%E5%88%98%E6%AC%A3%20%E5%88%98%E6%98%8E&rft.date=2011-11-01&rft.volume=32&rft.issue=11&rft.spage=55&rft.epage=59&rft.pages=55-59&rft.issn=1674-4926&rft_id=info:doi/10.1088/1674-4926/32/11/114004&rft_dat=%3Cproquest_chong%3E1439759387%3C/proquest_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439759387&rft_id=info:pmid/&rft_cqvip_id=39822431&rfr_iscdi=true |