Analytical model for the dispersion of sub-threshold current in organic thin-film transistors

This paper proposes an equivalent circuit model to analyze the reason for the dispersion of sub-threshold current (also known as zero-current point dispersion) in organic thin-film transistors. Based on the level 61 amorphous silicon thin-film transistor model in star-HSPICE, the results from our eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of semiconductors 2011-11, Vol.32 (11), p.55-59
1. Verfasser: 陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 11
container_start_page 55
container_title Journal of semiconductors
container_volume 32
creator 陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明
description This paper proposes an equivalent circuit model to analyze the reason for the dispersion of sub-threshold current (also known as zero-current point dispersion) in organic thin-film transistors. Based on the level 61 amorphous silicon thin-film transistor model in star-HSPICE, the results from our equivalent circuit model simulation reveal that zero-current point dispersion can be attributed to two factors: large contact resistance and small gate resistance. Furthermore, it is found that decreasing the contact resistance and increasing the gate resistance can efficiently reduce the dispersion. If the contact resistance can be controlled to 0 g2, all the zero-current points can gather together at the base point. A large gate resistance is good for constraining the dispersion of the zero-current points and gate leakage. The variances of the zero-current points are 0.0057 and nearly 0 when the gate resistances are 17 MΩ and 276 MΩ, respectively.
doi_str_mv 10.1088/1674-4926/32/11/114004
format Article
fullrecord <record><control><sourceid>proquest_chong</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439759387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39822431</cqvip_id><sourcerecordid>1439759387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-67ecc906f01e133fc6b83f5d3750ce4651d18f86e918af07fda27e13413a4d6d3</originalsourceid><addsrcrecordid>eNqFkD1rwzAURT200JDmLxR16-JGz5JleQyhXxDo0o5FKPqIBbbkSPaQf1-HhHQJFARvuOc8PW6WPQB-Bsz5ElhFc1oXbEmKJcD0KMb0JptdgrtskZLbYlxzTqZwlv2svGwPg1OyRV3QpkU2RDQ0BmmXehOTCx4Fi9K4zYcmmtSEViM1xmj8gNyUxZ30Tk2K87l1bYeGKH1yaQgx3We3VrbJLM5znn2_vnyt3_PN59vHerXJFaEw5KwyStWYWQwGCLGKbTmxpSZViZWhrAQN3HJmauDS4spqWVQTSYFIqpkm8-zptLePYT-aNIjOJWXaVnoTxiSAkroqa8KrCWUnVMWQUjRW9NF1Mh4EYHGsURzbEse2BCkEgDjVOIn5SXSh_3OusqLXduLhCv_fH4_n45rgd3vndxeT1LwoKAHyC5D7j9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439759387</pqid></control><display><type>article</type><title>Analytical model for the dispersion of sub-threshold current in organic thin-film transistors</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</creator><creatorcontrib>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</creatorcontrib><description>This paper proposes an equivalent circuit model to analyze the reason for the dispersion of sub-threshold current (also known as zero-current point dispersion) in organic thin-film transistors. Based on the level 61 amorphous silicon thin-film transistor model in star-HSPICE, the results from our equivalent circuit model simulation reveal that zero-current point dispersion can be attributed to two factors: large contact resistance and small gate resistance. Furthermore, it is found that decreasing the contact resistance and increasing the gate resistance can efficiently reduce the dispersion. If the contact resistance can be controlled to 0 g2, all the zero-current points can gather together at the base point. A large gate resistance is good for constraining the dispersion of the zero-current points and gate leakage. The variances of the zero-current points are 0.0057 and nearly 0 when the gate resistances are 17 MΩ and 276 MΩ, respectively.</description><identifier>ISSN: 1674-4926</identifier><identifier>DOI: 10.1088/1674-4926/32/11/114004</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Constraining ; Contact resistance ; Dispersions ; Equivalent circuits ; Gates (circuits) ; HSPICE ; Semiconductor devices ; Semiconductors ; Thin films ; Transistors ; 亚阈值电流 ; 分散性 ; 接触电阻 ; 晶体管模型 ; 有机薄膜晶体管 ; 等效电路模型 ; 零电流</subject><ispartof>Journal of semiconductors, 2011-11, Vol.32 (11), p.55-59</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-67ecc906f01e133fc6b83f5d3750ce4651d18f86e918af07fda27e13413a4d6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/94689X/94689X.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-4926/32/11/114004/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53888</link.rule.ids></links><search><creatorcontrib>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</creatorcontrib><title>Analytical model for the dispersion of sub-threshold current in organic thin-film transistors</title><title>Journal of semiconductors</title><addtitle>Chinese Journal of Semiconductors</addtitle><description>This paper proposes an equivalent circuit model to analyze the reason for the dispersion of sub-threshold current (also known as zero-current point dispersion) in organic thin-film transistors. Based on the level 61 amorphous silicon thin-film transistor model in star-HSPICE, the results from our equivalent circuit model simulation reveal that zero-current point dispersion can be attributed to two factors: large contact resistance and small gate resistance. Furthermore, it is found that decreasing the contact resistance and increasing the gate resistance can efficiently reduce the dispersion. If the contact resistance can be controlled to 0 g2, all the zero-current points can gather together at the base point. A large gate resistance is good for constraining the dispersion of the zero-current points and gate leakage. The variances of the zero-current points are 0.0057 and nearly 0 when the gate resistances are 17 MΩ and 276 MΩ, respectively.</description><subject>Constraining</subject><subject>Contact resistance</subject><subject>Dispersions</subject><subject>Equivalent circuits</subject><subject>Gates (circuits)</subject><subject>HSPICE</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Thin films</subject><subject>Transistors</subject><subject>亚阈值电流</subject><subject>分散性</subject><subject>接触电阻</subject><subject>晶体管模型</subject><subject>有机薄膜晶体管</subject><subject>等效电路模型</subject><subject>零电流</subject><issn>1674-4926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkD1rwzAURT200JDmLxR16-JGz5JleQyhXxDo0o5FKPqIBbbkSPaQf1-HhHQJFARvuOc8PW6WPQB-Bsz5ElhFc1oXbEmKJcD0KMb0JptdgrtskZLbYlxzTqZwlv2svGwPg1OyRV3QpkU2RDQ0BmmXehOTCx4Fi9K4zYcmmtSEViM1xmj8gNyUxZ30Tk2K87l1bYeGKH1yaQgx3We3VrbJLM5znn2_vnyt3_PN59vHerXJFaEw5KwyStWYWQwGCLGKbTmxpSZViZWhrAQN3HJmauDS4spqWVQTSYFIqpkm8-zptLePYT-aNIjOJWXaVnoTxiSAkroqa8KrCWUnVMWQUjRW9NF1Mh4EYHGsURzbEse2BCkEgDjVOIn5SXSh_3OusqLXduLhCv_fH4_n45rgd3vndxeT1LwoKAHyC5D7j9g</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</creator><general>IOP Publishing</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>Analytical model for the dispersion of sub-threshold current in organic thin-film transistors</title><author>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-67ecc906f01e133fc6b83f5d3750ce4651d18f86e918af07fda27e13413a4d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Constraining</topic><topic>Contact resistance</topic><topic>Dispersions</topic><topic>Equivalent circuits</topic><topic>Gates (circuits)</topic><topic>HSPICE</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Thin films</topic><topic>Transistors</topic><topic>亚阈值电流</topic><topic>分散性</topic><topic>接触电阻</topic><topic>晶体管模型</topic><topic>有机薄膜晶体管</topic><topic>等效电路模型</topic><topic>零电流</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of semiconductors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>陈映平 商立伟 姬濯宇 王宏 韩买兴 刘欣 刘明</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical model for the dispersion of sub-threshold current in organic thin-film transistors</atitle><jtitle>Journal of semiconductors</jtitle><addtitle>Chinese Journal of Semiconductors</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>32</volume><issue>11</issue><spage>55</spage><epage>59</epage><pages>55-59</pages><issn>1674-4926</issn><abstract>This paper proposes an equivalent circuit model to analyze the reason for the dispersion of sub-threshold current (also known as zero-current point dispersion) in organic thin-film transistors. Based on the level 61 amorphous silicon thin-film transistor model in star-HSPICE, the results from our equivalent circuit model simulation reveal that zero-current point dispersion can be attributed to two factors: large contact resistance and small gate resistance. Furthermore, it is found that decreasing the contact resistance and increasing the gate resistance can efficiently reduce the dispersion. If the contact resistance can be controlled to 0 g2, all the zero-current points can gather together at the base point. A large gate resistance is good for constraining the dispersion of the zero-current points and gate leakage. The variances of the zero-current points are 0.0057 and nearly 0 when the gate resistances are 17 MΩ and 276 MΩ, respectively.</abstract><pub>IOP Publishing</pub><doi>10.1088/1674-4926/32/11/114004</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4926
ispartof Journal of semiconductors, 2011-11, Vol.32 (11), p.55-59
issn 1674-4926
language eng
recordid cdi_proquest_miscellaneous_1439759387
source IOP Publishing Journals; Alma/SFX Local Collection
subjects Constraining
Contact resistance
Dispersions
Equivalent circuits
Gates (circuits)
HSPICE
Semiconductor devices
Semiconductors
Thin films
Transistors
亚阈值电流
分散性
接触电阻
晶体管模型
有机薄膜晶体管
等效电路模型
零电流
title Analytical model for the dispersion of sub-threshold current in organic thin-film transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20model%20for%20the%20dispersion%20of%20sub-threshold%20current%20in%20organic%20thin-film%20transistors&rft.jtitle=Journal%20of%20semiconductors&rft.au=%E9%99%88%E6%98%A0%E5%B9%B3%20%E5%95%86%E7%AB%8B%E4%BC%9F%20%E5%A7%AC%E6%BF%AF%E5%AE%87%20%E7%8E%8B%E5%AE%8F%20%E9%9F%A9%E4%B9%B0%E5%85%B4%20%E5%88%98%E6%AC%A3%20%E5%88%98%E6%98%8E&rft.date=2011-11-01&rft.volume=32&rft.issue=11&rft.spage=55&rft.epage=59&rft.pages=55-59&rft.issn=1674-4926&rft_id=info:doi/10.1088/1674-4926/32/11/114004&rft_dat=%3Cproquest_chong%3E1439759387%3C/proquest_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439759387&rft_id=info:pmid/&rft_cqvip_id=39822431&rfr_iscdi=true