Polypyrrole–silica core–shell nanocomposites: a new route towards active materials in dielectrophoretic displays
A direct route to polypyrrole–silica core–shell nanoparticles with diameters in the 150–300 nm range is described to design new nanocomposites, in which the conducting part is wrapped by an external silica shell in order to obtain finally neutral conductive nanoparticles. The nanocomposites are char...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2011-02, Vol.13 (2), p.879-886 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 886 |
---|---|
container_issue | 2 |
container_start_page | 879 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 13 |
creator | Miomandre, F. Chandezon, F. Lama, B. Besnardière, J. Routier, M. Brosseau, A. Audebert, P. |
description | A direct route to polypyrrole–silica core–shell nanoparticles with diameters in the 150–300 nm range is described to design new nanocomposites, in which the conducting part is wrapped by an external silica shell in order to obtain finally neutral conductive nanoparticles. The nanocomposites are characterized by SEM, FTIR, electrochemistry and thermal gravimetric analysis, demonstrating that the external silica shell actually insulates the conjugated polymer from the outer medium. In a second step, the nanocomposites are coated with an additional PDMS layer. The electrorheological properties of the ink made by dispersion of these final nanoparticles in a low dielectric constant fluid are checked in a dielectrophoretic device, in which the motion of the particles induced by an external electric field can be used to monitor a switch of the light transmission properties with a low voltage threshold. |
doi_str_mv | 10.1007/s11051-010-9925-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439758151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788300791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e3ffac2d7bb6b15c3b1fd6f6bb844b3aed3ceefc32f61a5561735e63336369a73</originalsourceid><addsrcrecordid>eNp1kc9KxDAQxosoqKsP4C3gxUs1kzRp603EfyDoQcFbSNOpG-k2Ncm67M138A19ErOuBxGcS2bC7_uY5MuyA6DHQGl5EgCogJwCzeuaiZxtZDsgSpZXtXzaTD2vqpyWstjOdkN4oRQkq9lOFu9dvxyX3rseP98_gu2t0cQ4_z1Nse_JoAdn3Gx0wUYMp0STARfEu3lEEt1C-zYQbaJ9QzLTEb3VfSB2IK3FHk30bpwmu2hNugljr5dhL9vqEoT7P-cke7y8eDi_zm_vrm7Oz25zw4s65si7ThvWlk0jGxCGN9C1spNNUxVFwzW23CB2hrNOghZCQskFSs655LLWJZ9kR2vf0bvXOYaoZjaY9CY9oJsHBQWvS1GBgIQe_kFf3NwPaTsFqSqRPnllCGvKeBeCx06N3s60XyqgapWDWuegUg5qlYNiScPWmpDY4Rn9L-d_RV_rBpAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1111850077</pqid></control><display><type>article</type><title>Polypyrrole–silica core–shell nanocomposites: a new route towards active materials in dielectrophoretic displays</title><source>SpringerLink Journals</source><creator>Miomandre, F. ; Chandezon, F. ; Lama, B. ; Besnardière, J. ; Routier, M. ; Brosseau, A. ; Audebert, P.</creator><creatorcontrib>Miomandre, F. ; Chandezon, F. ; Lama, B. ; Besnardière, J. ; Routier, M. ; Brosseau, A. ; Audebert, P.</creatorcontrib><description>A direct route to polypyrrole–silica core–shell nanoparticles with diameters in the 150–300 nm range is described to design new nanocomposites, in which the conducting part is wrapped by an external silica shell in order to obtain finally neutral conductive nanoparticles. The nanocomposites are characterized by SEM, FTIR, electrochemistry and thermal gravimetric analysis, demonstrating that the external silica shell actually insulates the conjugated polymer from the outer medium. In a second step, the nanocomposites are coated with an additional PDMS layer. The electrorheological properties of the ink made by dispersion of these final nanoparticles in a low dielectric constant fluid are checked in a dielectrophoretic device, in which the motion of the particles induced by an external electric field can be used to monitor a switch of the light transmission properties with a low voltage threshold.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-010-9925-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Devices ; Electric fields ; Electrochemistry ; Gravimetric analysis ; Inorganic Chemistry ; Lasers ; Light transmission ; Materials Science ; Monitors ; Nanocomposites ; Nanoparticles ; Nanostructure ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Polymers ; Research Paper ; Shells ; Silica ; Silicon dioxide</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2011-02, Vol.13 (2), p.879-886</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Springer Science+Business Media B.V. 2011</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e3ffac2d7bb6b15c3b1fd6f6bb844b3aed3ceefc32f61a5561735e63336369a73</citedby><cites>FETCH-LOGICAL-c349t-e3ffac2d7bb6b15c3b1fd6f6bb844b3aed3ceefc32f61a5561735e63336369a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-010-9925-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-010-9925-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Miomandre, F.</creatorcontrib><creatorcontrib>Chandezon, F.</creatorcontrib><creatorcontrib>Lama, B.</creatorcontrib><creatorcontrib>Besnardière, J.</creatorcontrib><creatorcontrib>Routier, M.</creatorcontrib><creatorcontrib>Brosseau, A.</creatorcontrib><creatorcontrib>Audebert, P.</creatorcontrib><title>Polypyrrole–silica core–shell nanocomposites: a new route towards active materials in dielectrophoretic displays</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>A direct route to polypyrrole–silica core–shell nanoparticles with diameters in the 150–300 nm range is described to design new nanocomposites, in which the conducting part is wrapped by an external silica shell in order to obtain finally neutral conductive nanoparticles. The nanocomposites are characterized by SEM, FTIR, electrochemistry and thermal gravimetric analysis, demonstrating that the external silica shell actually insulates the conjugated polymer from the outer medium. In a second step, the nanocomposites are coated with an additional PDMS layer. The electrorheological properties of the ink made by dispersion of these final nanoparticles in a low dielectric constant fluid are checked in a dielectrophoretic device, in which the motion of the particles induced by an external electric field can be used to monitor a switch of the light transmission properties with a low voltage threshold.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Devices</subject><subject>Electric fields</subject><subject>Electrochemistry</subject><subject>Gravimetric analysis</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Light transmission</subject><subject>Materials Science</subject><subject>Monitors</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Polymers</subject><subject>Research Paper</subject><subject>Shells</subject><subject>Silica</subject><subject>Silicon dioxide</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9KxDAQxosoqKsP4C3gxUs1kzRp603EfyDoQcFbSNOpG-k2Ncm67M138A19ErOuBxGcS2bC7_uY5MuyA6DHQGl5EgCogJwCzeuaiZxtZDsgSpZXtXzaTD2vqpyWstjOdkN4oRQkq9lOFu9dvxyX3rseP98_gu2t0cQ4_z1Nse_JoAdn3Gx0wUYMp0STARfEu3lEEt1C-zYQbaJ9QzLTEb3VfSB2IK3FHk30bpwmu2hNugljr5dhL9vqEoT7P-cke7y8eDi_zm_vrm7Oz25zw4s65si7ThvWlk0jGxCGN9C1spNNUxVFwzW23CB2hrNOghZCQskFSs655LLWJZ9kR2vf0bvXOYaoZjaY9CY9oJsHBQWvS1GBgIQe_kFf3NwPaTsFqSqRPnllCGvKeBeCx06N3s60XyqgapWDWuegUg5qlYNiScPWmpDY4Rn9L-d_RV_rBpAM</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Miomandre, F.</creator><creator>Chandezon, F.</creator><creator>Lama, B.</creator><creator>Besnardière, J.</creator><creator>Routier, M.</creator><creator>Brosseau, A.</creator><creator>Audebert, P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SP</scope></search><sort><creationdate>20110201</creationdate><title>Polypyrrole–silica core–shell nanocomposites: a new route towards active materials in dielectrophoretic displays</title><author>Miomandre, F. ; Chandezon, F. ; Lama, B. ; Besnardière, J. ; Routier, M. ; Brosseau, A. ; Audebert, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e3ffac2d7bb6b15c3b1fd6f6bb844b3aed3ceefc32f61a5561735e63336369a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Devices</topic><topic>Electric fields</topic><topic>Electrochemistry</topic><topic>Gravimetric analysis</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Light transmission</topic><topic>Materials Science</topic><topic>Monitors</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Polymers</topic><topic>Research Paper</topic><topic>Shells</topic><topic>Silica</topic><topic>Silicon dioxide</topic><toplevel>online_resources</toplevel><creatorcontrib>Miomandre, F.</creatorcontrib><creatorcontrib>Chandezon, F.</creatorcontrib><creatorcontrib>Lama, B.</creatorcontrib><creatorcontrib>Besnardière, J.</creatorcontrib><creatorcontrib>Routier, M.</creatorcontrib><creatorcontrib>Brosseau, A.</creatorcontrib><creatorcontrib>Audebert, P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Electronics & Communications Abstracts</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miomandre, F.</au><au>Chandezon, F.</au><au>Lama, B.</au><au>Besnardière, J.</au><au>Routier, M.</au><au>Brosseau, A.</au><au>Audebert, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polypyrrole–silica core–shell nanocomposites: a new route towards active materials in dielectrophoretic displays</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>13</volume><issue>2</issue><spage>879</spage><epage>886</epage><pages>879-886</pages><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>A direct route to polypyrrole–silica core–shell nanoparticles with diameters in the 150–300 nm range is described to design new nanocomposites, in which the conducting part is wrapped by an external silica shell in order to obtain finally neutral conductive nanoparticles. The nanocomposites are characterized by SEM, FTIR, electrochemistry and thermal gravimetric analysis, demonstrating that the external silica shell actually insulates the conjugated polymer from the outer medium. In a second step, the nanocomposites are coated with an additional PDMS layer. The electrorheological properties of the ink made by dispersion of these final nanoparticles in a low dielectric constant fluid are checked in a dielectrophoretic device, in which the motion of the particles induced by an external electric field can be used to monitor a switch of the light transmission properties with a low voltage threshold.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-010-9925-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2011-02, Vol.13 (2), p.879-886 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_miscellaneous_1439758151 |
source | SpringerLink Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Devices Electric fields Electrochemistry Gravimetric analysis Inorganic Chemistry Lasers Light transmission Materials Science Monitors Nanocomposites Nanoparticles Nanostructure Nanotechnology Optical Devices Optics Photonics Physical Chemistry Polymers Research Paper Shells Silica Silicon dioxide |
title | Polypyrrole–silica core–shell nanocomposites: a new route towards active materials in dielectrophoretic displays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polypyrrole%E2%80%93silica%20core%E2%80%93shell%20nanocomposites:%20a%20new%20route%20towards%20active%20materials%20in%20dielectrophoretic%20displays&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Miomandre,%20F.&rft.date=2011-02-01&rft.volume=13&rft.issue=2&rft.spage=879&rft.epage=886&rft.pages=879-886&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-010-9925-2&rft_dat=%3Cproquest_cross%3E2788300791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1111850077&rft_id=info:pmid/&rfr_iscdi=true |