Data classification through an evolutionary approach based on multiple criteria
Real-world problems usually present a huge volume of imprecise data. These types of problems may challenge case-based reasoning systems because the knowledge extracted from data is used to identify analogies and solve new problems. Many authors have focused on organizing case memory in patterns to m...
Gespeichert in:
Veröffentlicht in: | Knowledge and information systems 2012-10, Vol.33 (1), p.35-56 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Knowledge and information systems |
container_volume | 33 |
creator | Garcia-Piquer, A. Fornells, A. Orriols-Puig, A. Corral, G. Golobardes, E. |
description | Real-world problems usually present a huge volume of imprecise data. These types of problems may challenge case-based reasoning systems because the knowledge extracted from data is used to identify analogies and solve new problems. Many authors have focused on organizing case memory in patterns to minimize the computational burden and deal with uncertainty. The organization is usually determined by a single criterion, but in some problems, a single criterion can be insufficient to find accurate clusters. This work describes an approach to organize the case memory in patterns based on multiple criteria. This new approach uses the searching capabilities of multiobjective evolutionary algorithms to build a Pareto set of solutions, where each one is a possible organization based on the relevance of objectives. The system shows promising capabilities when it is compared with a successful system based on self-organizing maps. Due to the data set geometry influences, the clustering building process results are analyzed taking into account it. For this reason, some complexity measures are used to categorize data sets according to their topology. |
doi_str_mv | 10.1007/s10115-011-0462-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439756979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439756979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-dfc407cf29b540c0be900fc0e114611c69fe153ca4776594f980dfeb934f3673</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7jlgsSlYDdpshwR39KkXXaP0izZMnVtSVok_j2ZOnHkYlv241f2S8gtwgMCyMeEgFgVORTARVmoMzKDElXBEMX5qUYm5SW5SmkPgFIgzsjqxQyG2sakFHywZghdS4dd7MbtjpqWuu-uGY9NE3-o6fvYGbujtUluQzN5GJsh9I2jNobBxWCuyYU3TXI3pzwn67fX9fNHsVy9fz4_LQvLKhyKjbccpPWlqisOFmqnALwFh8jzXVYo77Bi1nApRaW4VwvYeFcrxj0Tks3J_SSbD_oaXRr0ISTrmsa0rhuTRs6UrISSKqM4oTZ2KUXndR_DIb-jEfTROz15p3PQR-_0cefuJG-SNY2PprUh_S2WgjO5ECxz5cSlPGq3Lup9N8Y2P_6P-C8XSH7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439756979</pqid></control><display><type>article</type><title>Data classification through an evolutionary approach based on multiple criteria</title><source>SpringerNature Complete Journals</source><creator>Garcia-Piquer, A. ; Fornells, A. ; Orriols-Puig, A. ; Corral, G. ; Golobardes, E.</creator><creatorcontrib>Garcia-Piquer, A. ; Fornells, A. ; Orriols-Puig, A. ; Corral, G. ; Golobardes, E.</creatorcontrib><description>Real-world problems usually present a huge volume of imprecise data. These types of problems may challenge case-based reasoning systems because the knowledge extracted from data is used to identify analogies and solve new problems. Many authors have focused on organizing case memory in patterns to minimize the computational burden and deal with uncertainty. The organization is usually determined by a single criterion, but in some problems, a single criterion can be insufficient to find accurate clusters. This work describes an approach to organize the case memory in patterns based on multiple criteria. This new approach uses the searching capabilities of multiobjective evolutionary algorithms to build a Pareto set of solutions, where each one is a possible organization based on the relevance of objectives. The system shows promising capabilities when it is compared with a successful system based on self-organizing maps. Due to the data set geometry influences, the clustering building process results are analyzed taking into account it. For this reason, some complexity measures are used to categorize data sets according to their topology.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-011-0462-9</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Clusters ; Computer Science ; Computer science; control theory; systems ; Connectionism. Neural networks ; Construction ; Criteria ; Data Mining and Knowledge Discovery ; Data processing. List processing. Character string processing ; Database Management ; Evolutionary ; Exact sciences and technology ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Memory organisation. Data processing ; Organizations ; Organizing ; Regular Paper ; Searching ; Software ; Theoretical computing</subject><ispartof>Knowledge and information systems, 2012-10, Vol.33 (1), p.35-56</ispartof><rights>Springer-Verlag London Limited 2011</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-dfc407cf29b540c0be900fc0e114611c69fe153ca4776594f980dfeb934f3673</citedby><cites>FETCH-LOGICAL-c351t-dfc407cf29b540c0be900fc0e114611c69fe153ca4776594f980dfeb934f3673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-011-0462-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-011-0462-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26437863$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia-Piquer, A.</creatorcontrib><creatorcontrib>Fornells, A.</creatorcontrib><creatorcontrib>Orriols-Puig, A.</creatorcontrib><creatorcontrib>Corral, G.</creatorcontrib><creatorcontrib>Golobardes, E.</creatorcontrib><title>Data classification through an evolutionary approach based on multiple criteria</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Real-world problems usually present a huge volume of imprecise data. These types of problems may challenge case-based reasoning systems because the knowledge extracted from data is used to identify analogies and solve new problems. Many authors have focused on organizing case memory in patterns to minimize the computational burden and deal with uncertainty. The organization is usually determined by a single criterion, but in some problems, a single criterion can be insufficient to find accurate clusters. This work describes an approach to organize the case memory in patterns based on multiple criteria. This new approach uses the searching capabilities of multiobjective evolutionary algorithms to build a Pareto set of solutions, where each one is a possible organization based on the relevance of objectives. The system shows promising capabilities when it is compared with a successful system based on self-organizing maps. Due to the data set geometry influences, the clustering building process results are analyzed taking into account it. For this reason, some complexity measures are used to categorize data sets according to their topology.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clusters</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Construction</subject><subject>Criteria</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data processing. List processing. Character string processing</subject><subject>Database Management</subject><subject>Evolutionary</subject><subject>Exact sciences and technology</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Memory organisation. Data processing</subject><subject>Organizations</subject><subject>Organizing</subject><subject>Regular Paper</subject><subject>Searching</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7jlgsSlYDdpshwR39KkXXaP0izZMnVtSVok_j2ZOnHkYlv241f2S8gtwgMCyMeEgFgVORTARVmoMzKDElXBEMX5qUYm5SW5SmkPgFIgzsjqxQyG2sakFHywZghdS4dd7MbtjpqWuu-uGY9NE3-o6fvYGbujtUluQzN5GJsh9I2jNobBxWCuyYU3TXI3pzwn67fX9fNHsVy9fz4_LQvLKhyKjbccpPWlqisOFmqnALwFh8jzXVYo77Bi1nApRaW4VwvYeFcrxj0Tks3J_SSbD_oaXRr0ISTrmsa0rhuTRs6UrISSKqM4oTZ2KUXndR_DIb-jEfTROz15p3PQR-_0cefuJG-SNY2PprUh_S2WgjO5ECxz5cSlPGq3Lup9N8Y2P_6P-C8XSH7s</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Garcia-Piquer, A.</creator><creator>Fornells, A.</creator><creator>Orriols-Puig, A.</creator><creator>Corral, G.</creator><creator>Golobardes, E.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121001</creationdate><title>Data classification through an evolutionary approach based on multiple criteria</title><author>Garcia-Piquer, A. ; Fornells, A. ; Orriols-Puig, A. ; Corral, G. ; Golobardes, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-dfc407cf29b540c0be900fc0e114611c69fe153ca4776594f980dfeb934f3673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clusters</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Construction</topic><topic>Criteria</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data processing. List processing. Character string processing</topic><topic>Database Management</topic><topic>Evolutionary</topic><topic>Exact sciences and technology</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Memory organisation. Data processing</topic><topic>Organizations</topic><topic>Organizing</topic><topic>Regular Paper</topic><topic>Searching</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Piquer, A.</creatorcontrib><creatorcontrib>Fornells, A.</creatorcontrib><creatorcontrib>Orriols-Puig, A.</creatorcontrib><creatorcontrib>Corral, G.</creatorcontrib><creatorcontrib>Golobardes, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Piquer, A.</au><au>Fornells, A.</au><au>Orriols-Puig, A.</au><au>Corral, G.</au><au>Golobardes, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data classification through an evolutionary approach based on multiple criteria</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>33</volume><issue>1</issue><spage>35</spage><epage>56</epage><pages>35-56</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>Real-world problems usually present a huge volume of imprecise data. These types of problems may challenge case-based reasoning systems because the knowledge extracted from data is used to identify analogies and solve new problems. Many authors have focused on organizing case memory in patterns to minimize the computational burden and deal with uncertainty. The organization is usually determined by a single criterion, but in some problems, a single criterion can be insufficient to find accurate clusters. This work describes an approach to organize the case memory in patterns based on multiple criteria. This new approach uses the searching capabilities of multiobjective evolutionary algorithms to build a Pareto set of solutions, where each one is a possible organization based on the relevance of objectives. The system shows promising capabilities when it is compared with a successful system based on self-organizing maps. Due to the data set geometry influences, the clustering building process results are analyzed taking into account it. For this reason, some complexity measures are used to categorize data sets according to their topology.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s10115-011-0462-9</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-1377 |
ispartof | Knowledge and information systems, 2012-10, Vol.33 (1), p.35-56 |
issn | 0219-1377 0219-3116 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439756979 |
source | SpringerNature Complete Journals |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Clusters Computer Science Computer science control theory systems Connectionism. Neural networks Construction Criteria Data Mining and Knowledge Discovery Data processing. List processing. Character string processing Database Management Evolutionary Exact sciences and technology Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Memory organisation. Data processing Organizations Organizing Regular Paper Searching Software Theoretical computing |
title | Data classification through an evolutionary approach based on multiple criteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20classification%20through%20an%20evolutionary%20approach%20based%20on%20multiple%20criteria&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Garcia-Piquer,%20A.&rft.date=2012-10-01&rft.volume=33&rft.issue=1&rft.spage=35&rft.epage=56&rft.pages=35-56&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-011-0462-9&rft_dat=%3Cproquest_cross%3E1439756979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439756979&rft_id=info:pmid/&rfr_iscdi=true |