Data classification through an evolutionary approach based on multiple criteria

Real-world problems usually present a huge volume of imprecise data. These types of problems may challenge case-based reasoning systems because the knowledge extracted from data is used to identify analogies and solve new problems. Many authors have focused on organizing case memory in patterns to m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge and information systems 2012-10, Vol.33 (1), p.35-56
Hauptverfasser: Garcia-Piquer, A., Fornells, A., Orriols-Puig, A., Corral, G., Golobardes, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 35
container_title Knowledge and information systems
container_volume 33
creator Garcia-Piquer, A.
Fornells, A.
Orriols-Puig, A.
Corral, G.
Golobardes, E.
description Real-world problems usually present a huge volume of imprecise data. These types of problems may challenge case-based reasoning systems because the knowledge extracted from data is used to identify analogies and solve new problems. Many authors have focused on organizing case memory in patterns to minimize the computational burden and deal with uncertainty. The organization is usually determined by a single criterion, but in some problems, a single criterion can be insufficient to find accurate clusters. This work describes an approach to organize the case memory in patterns based on multiple criteria. This new approach uses the searching capabilities of multiobjective evolutionary algorithms to build a Pareto set of solutions, where each one is a possible organization based on the relevance of objectives. The system shows promising capabilities when it is compared with a successful system based on self-organizing maps. Due to the data set geometry influences, the clustering building process results are analyzed taking into account it. For this reason, some complexity measures are used to categorize data sets according to their topology.
doi_str_mv 10.1007/s10115-011-0462-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439756979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439756979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-dfc407cf29b540c0be900fc0e114611c69fe153ca4776594f980dfeb934f3673</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7jlgsSlYDdpshwR39KkXXaP0izZMnVtSVok_j2ZOnHkYlv241f2S8gtwgMCyMeEgFgVORTARVmoMzKDElXBEMX5qUYm5SW5SmkPgFIgzsjqxQyG2sakFHywZghdS4dd7MbtjpqWuu-uGY9NE3-o6fvYGbujtUluQzN5GJsh9I2jNobBxWCuyYU3TXI3pzwn67fX9fNHsVy9fz4_LQvLKhyKjbccpPWlqisOFmqnALwFh8jzXVYo77Bi1nApRaW4VwvYeFcrxj0Tks3J_SSbD_oaXRr0ISTrmsa0rhuTRs6UrISSKqM4oTZ2KUXndR_DIb-jEfTROz15p3PQR-_0cefuJG-SNY2PprUh_S2WgjO5ECxz5cSlPGq3Lup9N8Y2P_6P-C8XSH7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439756979</pqid></control><display><type>article</type><title>Data classification through an evolutionary approach based on multiple criteria</title><source>SpringerNature Complete Journals</source><creator>Garcia-Piquer, A. ; Fornells, A. ; Orriols-Puig, A. ; Corral, G. ; Golobardes, E.</creator><creatorcontrib>Garcia-Piquer, A. ; Fornells, A. ; Orriols-Puig, A. ; Corral, G. ; Golobardes, E.</creatorcontrib><description>Real-world problems usually present a huge volume of imprecise data. These types of problems may challenge case-based reasoning systems because the knowledge extracted from data is used to identify analogies and solve new problems. Many authors have focused on organizing case memory in patterns to minimize the computational burden and deal with uncertainty. The organization is usually determined by a single criterion, but in some problems, a single criterion can be insufficient to find accurate clusters. This work describes an approach to organize the case memory in patterns based on multiple criteria. This new approach uses the searching capabilities of multiobjective evolutionary algorithms to build a Pareto set of solutions, where each one is a possible organization based on the relevance of objectives. The system shows promising capabilities when it is compared with a successful system based on self-organizing maps. Due to the data set geometry influences, the clustering building process results are analyzed taking into account it. For this reason, some complexity measures are used to categorize data sets according to their topology.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-011-0462-9</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Clusters ; Computer Science ; Computer science; control theory; systems ; Connectionism. Neural networks ; Construction ; Criteria ; Data Mining and Knowledge Discovery ; Data processing. List processing. Character string processing ; Database Management ; Evolutionary ; Exact sciences and technology ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Memory organisation. Data processing ; Organizations ; Organizing ; Regular Paper ; Searching ; Software ; Theoretical computing</subject><ispartof>Knowledge and information systems, 2012-10, Vol.33 (1), p.35-56</ispartof><rights>Springer-Verlag London Limited 2011</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-dfc407cf29b540c0be900fc0e114611c69fe153ca4776594f980dfeb934f3673</citedby><cites>FETCH-LOGICAL-c351t-dfc407cf29b540c0be900fc0e114611c69fe153ca4776594f980dfeb934f3673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-011-0462-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-011-0462-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26437863$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia-Piquer, A.</creatorcontrib><creatorcontrib>Fornells, A.</creatorcontrib><creatorcontrib>Orriols-Puig, A.</creatorcontrib><creatorcontrib>Corral, G.</creatorcontrib><creatorcontrib>Golobardes, E.</creatorcontrib><title>Data classification through an evolutionary approach based on multiple criteria</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Real-world problems usually present a huge volume of imprecise data. These types of problems may challenge case-based reasoning systems because the knowledge extracted from data is used to identify analogies and solve new problems. Many authors have focused on organizing case memory in patterns to minimize the computational burden and deal with uncertainty. The organization is usually determined by a single criterion, but in some problems, a single criterion can be insufficient to find accurate clusters. This work describes an approach to organize the case memory in patterns based on multiple criteria. This new approach uses the searching capabilities of multiobjective evolutionary algorithms to build a Pareto set of solutions, where each one is a possible organization based on the relevance of objectives. The system shows promising capabilities when it is compared with a successful system based on self-organizing maps. Due to the data set geometry influences, the clustering building process results are analyzed taking into account it. For this reason, some complexity measures are used to categorize data sets according to their topology.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clusters</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Construction</subject><subject>Criteria</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data processing. List processing. Character string processing</subject><subject>Database Management</subject><subject>Evolutionary</subject><subject>Exact sciences and technology</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Memory organisation. Data processing</subject><subject>Organizations</subject><subject>Organizing</subject><subject>Regular Paper</subject><subject>Searching</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7jlgsSlYDdpshwR39KkXXaP0izZMnVtSVok_j2ZOnHkYlv241f2S8gtwgMCyMeEgFgVORTARVmoMzKDElXBEMX5qUYm5SW5SmkPgFIgzsjqxQyG2sakFHywZghdS4dd7MbtjpqWuu-uGY9NE3-o6fvYGbujtUluQzN5GJsh9I2jNobBxWCuyYU3TXI3pzwn67fX9fNHsVy9fz4_LQvLKhyKjbccpPWlqisOFmqnALwFh8jzXVYo77Bi1nApRaW4VwvYeFcrxj0Tks3J_SSbD_oaXRr0ISTrmsa0rhuTRs6UrISSKqM4oTZ2KUXndR_DIb-jEfTROz15p3PQR-_0cefuJG-SNY2PprUh_S2WgjO5ECxz5cSlPGq3Lup9N8Y2P_6P-C8XSH7s</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Garcia-Piquer, A.</creator><creator>Fornells, A.</creator><creator>Orriols-Puig, A.</creator><creator>Corral, G.</creator><creator>Golobardes, E.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121001</creationdate><title>Data classification through an evolutionary approach based on multiple criteria</title><author>Garcia-Piquer, A. ; Fornells, A. ; Orriols-Puig, A. ; Corral, G. ; Golobardes, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-dfc407cf29b540c0be900fc0e114611c69fe153ca4776594f980dfeb934f3673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clusters</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Construction</topic><topic>Criteria</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data processing. List processing. Character string processing</topic><topic>Database Management</topic><topic>Evolutionary</topic><topic>Exact sciences and technology</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Memory organisation. Data processing</topic><topic>Organizations</topic><topic>Organizing</topic><topic>Regular Paper</topic><topic>Searching</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Piquer, A.</creatorcontrib><creatorcontrib>Fornells, A.</creatorcontrib><creatorcontrib>Orriols-Puig, A.</creatorcontrib><creatorcontrib>Corral, G.</creatorcontrib><creatorcontrib>Golobardes, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Piquer, A.</au><au>Fornells, A.</au><au>Orriols-Puig, A.</au><au>Corral, G.</au><au>Golobardes, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data classification through an evolutionary approach based on multiple criteria</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>33</volume><issue>1</issue><spage>35</spage><epage>56</epage><pages>35-56</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>Real-world problems usually present a huge volume of imprecise data. These types of problems may challenge case-based reasoning systems because the knowledge extracted from data is used to identify analogies and solve new problems. Many authors have focused on organizing case memory in patterns to minimize the computational burden and deal with uncertainty. The organization is usually determined by a single criterion, but in some problems, a single criterion can be insufficient to find accurate clusters. This work describes an approach to organize the case memory in patterns based on multiple criteria. This new approach uses the searching capabilities of multiobjective evolutionary algorithms to build a Pareto set of solutions, where each one is a possible organization based on the relevance of objectives. The system shows promising capabilities when it is compared with a successful system based on self-organizing maps. Due to the data set geometry influences, the clustering building process results are analyzed taking into account it. For this reason, some complexity measures are used to categorize data sets according to their topology.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s10115-011-0462-9</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0219-1377
ispartof Knowledge and information systems, 2012-10, Vol.33 (1), p.35-56
issn 0219-1377
0219-3116
language eng
recordid cdi_proquest_miscellaneous_1439756979
source SpringerNature Complete Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Clusters
Computer Science
Computer science
control theory
systems
Connectionism. Neural networks
Construction
Criteria
Data Mining and Knowledge Discovery
Data processing. List processing. Character string processing
Database Management
Evolutionary
Exact sciences and technology
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Memory organisation. Data processing
Organizations
Organizing
Regular Paper
Searching
Software
Theoretical computing
title Data classification through an evolutionary approach based on multiple criteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20classification%20through%20an%20evolutionary%20approach%20based%20on%20multiple%20criteria&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Garcia-Piquer,%20A.&rft.date=2012-10-01&rft.volume=33&rft.issue=1&rft.spage=35&rft.epage=56&rft.pages=35-56&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-011-0462-9&rft_dat=%3Cproquest_cross%3E1439756979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439756979&rft_id=info:pmid/&rfr_iscdi=true