Thermal and dynamic mechanical characterization of acrylic bone cements modified with biodegradable polymers

In this work, a thermal and a dynamic mechanical study of new formulations self‐curing acrylic bone cements is reported. The basic formulation of poly(methylmethacrylate) (PMMA)‐based acrylic bone cements has been modified with biodegradable polyesters such as poly(l‐lactic acid), poly(β‐hydroxybuty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2013-06, Vol.128 (5), p.3455-3464
Hauptverfasser: Franco-Marques, E, Mendez, JA, Girones, J, Pelach, MA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3464
container_issue 5
container_start_page 3455
container_title Journal of applied polymer science
container_volume 128
creator Franco-Marques, E
Mendez, JA
Girones, J
Pelach, MA
description In this work, a thermal and a dynamic mechanical study of new formulations self‐curing acrylic bone cements is reported. The basic formulation of poly(methylmethacrylate) (PMMA)‐based acrylic bone cements has been modified with biodegradable polyesters such as poly(l‐lactic acid), poly(β‐hydroxybutyrate), and different kinds of thermoplastic starches. Differential scanning calorimetry (DSC) (dynamic and isothermal conditions), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and scanning electron microscopy (SEM) were used to determine the influence of the biodegradable polymer in the behavior of the biomedical formulations. DSC assay revealed a strong dependence of the polymerization enthalpy (ΔHcur) with increasing solid : liquid ratio and a low influence of the nature of the added biodegradable polymer on glass transition. TGA analysis showed the different mechanism of PMMA‐biodegradable polymer interaction depending on the solubilization of the added polymer in methylmethacrylate monomer during curing. DMTA showed the reinforcing capacity of segregated phases of the polymer included in the cement. The solubilization of aliphatic polyesters in the resulting PMMA polymerized phase led to a drop in mechanical stiffness observed from storage modulus (E′) profiles. Moreover, tan δ shifts to higher temperatures (4–7°C) during a second scan, confirming the presence of residual monomer content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
doi_str_mv 10.1002/app.38523
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439752378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439752378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4353-6aec5975134b11aa87e714d9755264466bbb1c52fa343c88f386aa40f9c193953</originalsourceid><addsrcrecordid>eNp1kM1u1TAQRiMEEpfCgjewhJBgkdb_dpalgoJaoIsiJDbWxJlwXZI4tXNVwtPjcksXSKxmND7fkfVV1XNGDxml_Ajm-VBYxcWDasNoY2qpuX1Ybcobq23TqMfVk5yvKGVMUb2phsstphEGAlNHunWCMXgyot_CFHw5lyWBXzCFX7CEOJHYE_BpHQrWxgmJxxGnJZMxdqEP2JGbsGxJG2KH3xN00A5I5jisI6b8tHrUw5Dx2d08qL68e3t58r4-_3z64eT4vPZSKFFrQK8ao5iQLWMA1qBhsisXxbWUWrdty7ziPQgpvLW9sBpA0r7xrBGNEgfVq713TvF6h3lxY8gehwEmjLvsmBRFxoWxBX3xD3oVd2kqv3NMMGka3Yhb4es95VPMOWHv5hRGSKtj1N327krv7k_vhX15Z4RcGuwTTD7k-wA3TGsueOGO9txNGHD9v9AdX1z8Ndf7RMgL_rxPQPrhtBFGua-fTt3Zm4_KfrNnjorfdjigTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314796935</pqid></control><display><type>article</type><title>Thermal and dynamic mechanical characterization of acrylic bone cements modified with biodegradable polymers</title><source>Wiley Online Library All Journals</source><creator>Franco-Marques, E ; Mendez, JA ; Girones, J ; Pelach, MA</creator><creatorcontrib>Franco-Marques, E ; Mendez, JA ; Girones, J ; Pelach, MA</creatorcontrib><description>In this work, a thermal and a dynamic mechanical study of new formulations self‐curing acrylic bone cements is reported. The basic formulation of poly(methylmethacrylate) (PMMA)‐based acrylic bone cements has been modified with biodegradable polyesters such as poly(l‐lactic acid), poly(β‐hydroxybutyrate), and different kinds of thermoplastic starches. Differential scanning calorimetry (DSC) (dynamic and isothermal conditions), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and scanning electron microscopy (SEM) were used to determine the influence of the biodegradable polymer in the behavior of the biomedical formulations. DSC assay revealed a strong dependence of the polymerization enthalpy (ΔHcur) with increasing solid : liquid ratio and a low influence of the nature of the added biodegradable polymer on glass transition. TGA analysis showed the different mechanism of PMMA‐biodegradable polymer interaction depending on the solubilization of the added polymer in methylmethacrylate monomer during curing. DMTA showed the reinforcing capacity of segregated phases of the polymer included in the cement. The solubilization of aliphatic polyesters in the resulting PMMA polymerized phase led to a drop in mechanical stiffness observed from storage modulus (E′) profiles. Moreover, tan δ shifts to higher temperatures (4–7°C) during a second scan, confirming the presence of residual monomer content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.38523</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Biological and medical sciences ; biomaterials ; differential scanning calorimetry (DSC) ; Exact sciences and technology ; glass transition ; Materials science ; Medical sciences ; Organic polymers ; Physicochemistry of polymers ; Polymers ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; thermogravimetric analysis (TGA)</subject><ispartof>Journal of applied polymer science, 2013-06, Vol.128 (5), p.3455-3464</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4353-6aec5975134b11aa87e714d9755264466bbb1c52fa343c88f386aa40f9c193953</citedby><cites>FETCH-LOGICAL-c4353-6aec5975134b11aa87e714d9755264466bbb1c52fa343c88f386aa40f9c193953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.38523$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.38523$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27166232$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Franco-Marques, E</creatorcontrib><creatorcontrib>Mendez, JA</creatorcontrib><creatorcontrib>Girones, J</creatorcontrib><creatorcontrib>Pelach, MA</creatorcontrib><title>Thermal and dynamic mechanical characterization of acrylic bone cements modified with biodegradable polymers</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>In this work, a thermal and a dynamic mechanical study of new formulations self‐curing acrylic bone cements is reported. The basic formulation of poly(methylmethacrylate) (PMMA)‐based acrylic bone cements has been modified with biodegradable polyesters such as poly(l‐lactic acid), poly(β‐hydroxybutyrate), and different kinds of thermoplastic starches. Differential scanning calorimetry (DSC) (dynamic and isothermal conditions), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and scanning electron microscopy (SEM) were used to determine the influence of the biodegradable polymer in the behavior of the biomedical formulations. DSC assay revealed a strong dependence of the polymerization enthalpy (ΔHcur) with increasing solid : liquid ratio and a low influence of the nature of the added biodegradable polymer on glass transition. TGA analysis showed the different mechanism of PMMA‐biodegradable polymer interaction depending on the solubilization of the added polymer in methylmethacrylate monomer during curing. DMTA showed the reinforcing capacity of segregated phases of the polymer included in the cement. The solubilization of aliphatic polyesters in the resulting PMMA polymerized phase led to a drop in mechanical stiffness observed from storage modulus (E′) profiles. Moreover, tan δ shifts to higher temperatures (4–7°C) during a second scan, confirming the presence of residual monomer content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>biomaterials</subject><subject>differential scanning calorimetry (DSC)</subject><subject>Exact sciences and technology</subject><subject>glass transition</subject><subject>Materials science</subject><subject>Medical sciences</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>thermogravimetric analysis (TGA)</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kM1u1TAQRiMEEpfCgjewhJBgkdb_dpalgoJaoIsiJDbWxJlwXZI4tXNVwtPjcksXSKxmND7fkfVV1XNGDxml_Ajm-VBYxcWDasNoY2qpuX1Ybcobq23TqMfVk5yvKGVMUb2phsstphEGAlNHunWCMXgyot_CFHw5lyWBXzCFX7CEOJHYE_BpHQrWxgmJxxGnJZMxdqEP2JGbsGxJG2KH3xN00A5I5jisI6b8tHrUw5Dx2d08qL68e3t58r4-_3z64eT4vPZSKFFrQK8ao5iQLWMA1qBhsisXxbWUWrdty7ziPQgpvLW9sBpA0r7xrBGNEgfVq713TvF6h3lxY8gehwEmjLvsmBRFxoWxBX3xD3oVd2kqv3NMMGka3Yhb4es95VPMOWHv5hRGSKtj1N327krv7k_vhX15Z4RcGuwTTD7k-wA3TGsueOGO9txNGHD9v9AdX1z8Ndf7RMgL_rxPQPrhtBFGua-fTt3Zm4_KfrNnjorfdjigTQ</recordid><startdate>20130605</startdate><enddate>20130605</enddate><creator>Franco-Marques, E</creator><creator>Mendez, JA</creator><creator>Girones, J</creator><creator>Pelach, MA</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QO</scope><scope>7T7</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130605</creationdate><title>Thermal and dynamic mechanical characterization of acrylic bone cements modified with biodegradable polymers</title><author>Franco-Marques, E ; Mendez, JA ; Girones, J ; Pelach, MA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4353-6aec5975134b11aa87e714d9755264466bbb1c52fa343c88f386aa40f9c193953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>biomaterials</topic><topic>differential scanning calorimetry (DSC)</topic><topic>Exact sciences and technology</topic><topic>glass transition</topic><topic>Materials science</topic><topic>Medical sciences</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>thermogravimetric analysis (TGA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franco-Marques, E</creatorcontrib><creatorcontrib>Mendez, JA</creatorcontrib><creatorcontrib>Girones, J</creatorcontrib><creatorcontrib>Pelach, MA</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franco-Marques, E</au><au>Mendez, JA</au><au>Girones, J</au><au>Pelach, MA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and dynamic mechanical characterization of acrylic bone cements modified with biodegradable polymers</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2013-06-05</date><risdate>2013</risdate><volume>128</volume><issue>5</issue><spage>3455</spage><epage>3464</epage><pages>3455-3464</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>In this work, a thermal and a dynamic mechanical study of new formulations self‐curing acrylic bone cements is reported. The basic formulation of poly(methylmethacrylate) (PMMA)‐based acrylic bone cements has been modified with biodegradable polyesters such as poly(l‐lactic acid), poly(β‐hydroxybutyrate), and different kinds of thermoplastic starches. Differential scanning calorimetry (DSC) (dynamic and isothermal conditions), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and scanning electron microscopy (SEM) were used to determine the influence of the biodegradable polymer in the behavior of the biomedical formulations. DSC assay revealed a strong dependence of the polymerization enthalpy (ΔHcur) with increasing solid : liquid ratio and a low influence of the nature of the added biodegradable polymer on glass transition. TGA analysis showed the different mechanism of PMMA‐biodegradable polymer interaction depending on the solubilization of the added polymer in methylmethacrylate monomer during curing. DMTA showed the reinforcing capacity of segregated phases of the polymer included in the cement. The solubilization of aliphatic polyesters in the resulting PMMA polymerized phase led to a drop in mechanical stiffness observed from storage modulus (E′) profiles. Moreover, tan δ shifts to higher temperatures (4–7°C) during a second scan, confirming the presence of residual monomer content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.38523</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2013-06, Vol.128 (5), p.3455-3464
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_miscellaneous_1439752378
source Wiley Online Library All Journals
subjects Applied sciences
Biological and medical sciences
biomaterials
differential scanning calorimetry (DSC)
Exact sciences and technology
glass transition
Materials science
Medical sciences
Organic polymers
Physicochemistry of polymers
Polymers
Polymers with particular properties
Preparation, kinetics, thermodynamics, mechanism and catalysts
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
thermogravimetric analysis (TGA)
title Thermal and dynamic mechanical characterization of acrylic bone cements modified with biodegradable polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20dynamic%20mechanical%20characterization%20of%20acrylic%20bone%20cements%20modified%20with%20biodegradable%20polymers&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Franco-Marques,%20E&rft.date=2013-06-05&rft.volume=128&rft.issue=5&rft.spage=3455&rft.epage=3464&rft.pages=3455-3464&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.38523&rft_dat=%3Cproquest_cross%3E1439752378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314796935&rft_id=info:pmid/&rfr_iscdi=true