Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials

Polymeric materials can assemble into a multitude of intricate nanoscale morphologies whose free energy differs by only a fraction of the thermal energy per molecule. Such small free-energy differences pose a challenge for modeling and simulation but also offer exciting opportunities to direct the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of materials research 2013-07, Vol.43 (1), p.1-34
Hauptverfasser: Müller, Marcus, de Pablo, Juan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 1
container_title Annual review of materials research
container_volume 43
creator Müller, Marcus
de Pablo, Juan J
description Polymeric materials can assemble into a multitude of intricate nanoscale morphologies whose free energy differs by only a fraction of the thermal energy per molecule. Such small free-energy differences pose a challenge for modeling and simulation but also offer exciting opportunities to direct the assembly of such materials into morphologies that do not correspond to those of equilibrium bulk structures. Over the past decade, significant progress has been achieved in our ability to guide their self-assembly through the use of confinement, topographical or chemical patterns, and electric fields. In contrast, approaches to guide self-assembly by tailoring the dynamics of structure formation have received less attention. This review discusses opportunities and challenges of recently developed computational strategies to predict the dynamics of self-assembly of polymeric materials on the basis of the underlying free-energy landscape.
doi_str_mv 10.1146/annurev-matsci-071312-121618
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439752373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439752373</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-d7bd1227dd45884331c329bb10a3e1a61bb7fabe1db685edc1212c088aceb4093</originalsourceid><addsrcrecordid>eNqVkc1O3DAUha2qlUqnfQer6oKNwTdOnIzEZjQtPxKoSMDasp0bxlViT22n1bw9HsILsDp3cc79-wj5AfwMoJbn2vs54j826ZysY7wFARWDCiR0H8gJNHXDaoDu47EWwFoh4DP5ktIfzkHKtTwhz9sw7eesswtej3Sz38eg7Q4THUKkeYf058HrydlEw0AfcpxtLjPpZYjTa4g6Tx9wHNgmJZzM6PwzvQ_jYcLoLL3Tuage01fyaSiC3950RZ4ufz1ur9nt76ub7eaW6YY3mfWt6aGq2r6vm66ry75WVGtjgGuBoCUY0w7aIPRGdg32thxbWd512qKp-VqsyPelb0jZqfKVjHZng_doswIpeCVlMZ0upnLs3xlTVpNLFsdRewxzUlCLddtUovxrRS4Wq40hpYiD2kc36XhQwNURgnqDoBYIaoGgFgglvlniR5cei8_h__S-Hi_5xpen</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439752373</pqid></control><display><type>article</type><title>Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials</title><source>Annual Reviews Complete A-Z List</source><creator>Müller, Marcus ; de Pablo, Juan J</creator><creatorcontrib>Müller, Marcus ; de Pablo, Juan J ; Univ. of Chicago, IL (United States) ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>Polymeric materials can assemble into a multitude of intricate nanoscale morphologies whose free energy differs by only a fraction of the thermal energy per molecule. Such small free-energy differences pose a challenge for modeling and simulation but also offer exciting opportunities to direct the assembly of such materials into morphologies that do not correspond to those of equilibrium bulk structures. Over the past decade, significant progress has been achieved in our ability to guide their self-assembly through the use of confinement, topographical or chemical patterns, and electric fields. In contrast, approaches to guide self-assembly by tailoring the dynamics of structure formation have received less attention. This review discusses opportunities and challenges of recently developed computational strategies to predict the dynamics of self-assembly of polymeric materials on the basis of the underlying free-energy landscape.</description><identifier>ISSN: 1531-7331</identifier><identifier>EISSN: 1545-4118</identifier><identifier>DOI: 10.1146/annurev-matsci-071312-121618</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Computation ; computer simulation ; Dynamics ; free-energy functional ; heterogeneous multiscale method ; MATERIALS SCIENCE ; MATHEMATICS AND COMPUTING ; minimum free-energy path ; Morphology ; Nanocomposites ; Nanomaterials ; Nanostructure ; Onsager coefficient ; Self assembly ; single-chain dynamics ; Strategy</subject><ispartof>Annual review of materials research, 2013-07, Vol.43 (1), p.1-34</ispartof><rights>Copyright © 2013 by Annual Reviews. All rights reserved 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-d7bd1227dd45884331c329bb10a3e1a61bb7fabe1db685edc1212c088aceb4093</citedby><cites>FETCH-LOGICAL-a505t-d7bd1227dd45884331c329bb10a3e1a61bb7fabe1db685edc1212c088aceb4093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-matsci-071312-121618?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-matsci-071312-121618$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,230,314,776,780,881,4168,27901,27902,78223,78224</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1630266$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Marcus</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials</title><title>Annual review of materials research</title><description>Polymeric materials can assemble into a multitude of intricate nanoscale morphologies whose free energy differs by only a fraction of the thermal energy per molecule. Such small free-energy differences pose a challenge for modeling and simulation but also offer exciting opportunities to direct the assembly of such materials into morphologies that do not correspond to those of equilibrium bulk structures. Over the past decade, significant progress has been achieved in our ability to guide their self-assembly through the use of confinement, topographical or chemical patterns, and electric fields. In contrast, approaches to guide self-assembly by tailoring the dynamics of structure formation have received less attention. This review discusses opportunities and challenges of recently developed computational strategies to predict the dynamics of self-assembly of polymeric materials on the basis of the underlying free-energy landscape.</description><subject>Computation</subject><subject>computer simulation</subject><subject>Dynamics</subject><subject>free-energy functional</subject><subject>heterogeneous multiscale method</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>minimum free-energy path</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Onsager coefficient</subject><subject>Self assembly</subject><subject>single-chain dynamics</subject><subject>Strategy</subject><issn>1531-7331</issn><issn>1545-4118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVkc1O3DAUha2qlUqnfQer6oKNwTdOnIzEZjQtPxKoSMDasp0bxlViT22n1bw9HsILsDp3cc79-wj5AfwMoJbn2vs54j826ZysY7wFARWDCiR0H8gJNHXDaoDu47EWwFoh4DP5ktIfzkHKtTwhz9sw7eesswtej3Sz38eg7Q4THUKkeYf058HrydlEw0AfcpxtLjPpZYjTa4g6Tx9wHNgmJZzM6PwzvQ_jYcLoLL3Tuage01fyaSiC3950RZ4ufz1ur9nt76ub7eaW6YY3mfWt6aGq2r6vm66ry75WVGtjgGuBoCUY0w7aIPRGdg32thxbWd512qKp-VqsyPelb0jZqfKVjHZng_doswIpeCVlMZ0upnLs3xlTVpNLFsdRewxzUlCLddtUovxrRS4Wq40hpYiD2kc36XhQwNURgnqDoBYIaoGgFgglvlniR5cei8_h__S-Hi_5xpen</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Müller, Marcus</creator><creator>de Pablo, Juan J</creator><general>Annual Reviews</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201307</creationdate><title>Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials</title><author>Müller, Marcus ; de Pablo, Juan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-d7bd1227dd45884331c329bb10a3e1a61bb7fabe1db685edc1212c088aceb4093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computation</topic><topic>computer simulation</topic><topic>Dynamics</topic><topic>free-energy functional</topic><topic>heterogeneous multiscale method</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>minimum free-energy path</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Onsager coefficient</topic><topic>Self assembly</topic><topic>single-chain dynamics</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Marcus</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Annual review of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Marcus</au><au>de Pablo, Juan J</au><aucorp>Univ. of Chicago, IL (United States)</aucorp><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials</atitle><jtitle>Annual review of materials research</jtitle><date>2013-07</date><risdate>2013</risdate><volume>43</volume><issue>1</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><issn>1531-7331</issn><eissn>1545-4118</eissn><abstract>Polymeric materials can assemble into a multitude of intricate nanoscale morphologies whose free energy differs by only a fraction of the thermal energy per molecule. Such small free-energy differences pose a challenge for modeling and simulation but also offer exciting opportunities to direct the assembly of such materials into morphologies that do not correspond to those of equilibrium bulk structures. Over the past decade, significant progress has been achieved in our ability to guide their self-assembly through the use of confinement, topographical or chemical patterns, and electric fields. In contrast, approaches to guide self-assembly by tailoring the dynamics of structure formation have received less attention. This review discusses opportunities and challenges of recently developed computational strategies to predict the dynamics of self-assembly of polymeric materials on the basis of the underlying free-energy landscape.</abstract><cop>United States</cop><pub>Annual Reviews</pub><doi>10.1146/annurev-matsci-071312-121618</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1531-7331
ispartof Annual review of materials research, 2013-07, Vol.43 (1), p.1-34
issn 1531-7331
1545-4118
language eng
recordid cdi_proquest_miscellaneous_1439752373
source Annual Reviews Complete A-Z List
subjects Computation
computer simulation
Dynamics
free-energy functional
heterogeneous multiscale method
MATERIALS SCIENCE
MATHEMATICS AND COMPUTING
minimum free-energy path
Morphology
Nanocomposites
Nanomaterials
Nanostructure
Onsager coefficient
Self assembly
single-chain dynamics
Strategy
title Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Approaches%20for%20the%20Dynamics%20of%20Structure%20Formation%20in%20Self-Assembling%20Polymeric%20Materials&rft.jtitle=Annual%20review%20of%20materials%20research&rft.au=M%C3%BCller,%20Marcus&rft.aucorp=Univ.%20of%20Chicago,%20IL%20(United%20States)&rft.date=2013-07&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.issn=1531-7331&rft.eissn=1545-4118&rft_id=info:doi/10.1146/annurev-matsci-071312-121618&rft_dat=%3Cproquest_osti_%3E1439752373%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439752373&rft_id=info:pmid/&rfr_iscdi=true