Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials
Polymeric materials can assemble into a multitude of intricate nanoscale morphologies whose free energy differs by only a fraction of the thermal energy per molecule. Such small free-energy differences pose a challenge for modeling and simulation but also offer exciting opportunities to direct the a...
Gespeichert in:
Veröffentlicht in: | Annual review of materials research 2013-07, Vol.43 (1), p.1-34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Annual review of materials research |
container_volume | 43 |
creator | Müller, Marcus de Pablo, Juan J |
description | Polymeric materials can assemble into a multitude of intricate nanoscale morphologies whose free energy differs by only a fraction of the thermal energy per molecule. Such small free-energy differences pose a challenge for modeling and simulation but also offer exciting opportunities to direct the assembly of such materials into morphologies that do not correspond to those of equilibrium bulk structures. Over the past decade, significant progress has been achieved in our ability to guide their self-assembly through the use of confinement, topographical or chemical patterns, and electric fields. In contrast, approaches to guide self-assembly by tailoring the dynamics of structure formation have received less attention. This review discusses opportunities and challenges of recently developed computational strategies to predict the dynamics of self-assembly of polymeric materials on the basis of the underlying free-energy landscape. |
doi_str_mv | 10.1146/annurev-matsci-071312-121618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439752373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439752373</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-d7bd1227dd45884331c329bb10a3e1a61bb7fabe1db685edc1212c088aceb4093</originalsourceid><addsrcrecordid>eNqVkc1O3DAUha2qlUqnfQer6oKNwTdOnIzEZjQtPxKoSMDasp0bxlViT22n1bw9HsILsDp3cc79-wj5AfwMoJbn2vs54j826ZysY7wFARWDCiR0H8gJNHXDaoDu47EWwFoh4DP5ktIfzkHKtTwhz9sw7eesswtej3Sz38eg7Q4THUKkeYf058HrydlEw0AfcpxtLjPpZYjTa4g6Tx9wHNgmJZzM6PwzvQ_jYcLoLL3Tuage01fyaSiC3950RZ4ufz1ur9nt76ub7eaW6YY3mfWt6aGq2r6vm66ry75WVGtjgGuBoCUY0w7aIPRGdg32thxbWd512qKp-VqsyPelb0jZqfKVjHZng_doswIpeCVlMZ0upnLs3xlTVpNLFsdRewxzUlCLddtUovxrRS4Wq40hpYiD2kc36XhQwNURgnqDoBYIaoGgFgglvlniR5cei8_h__S-Hi_5xpen</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439752373</pqid></control><display><type>article</type><title>Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials</title><source>Annual Reviews Complete A-Z List</source><creator>Müller, Marcus ; de Pablo, Juan J</creator><creatorcontrib>Müller, Marcus ; de Pablo, Juan J ; Univ. of Chicago, IL (United States) ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>Polymeric materials can assemble into a multitude of intricate nanoscale morphologies whose free energy differs by only a fraction of the thermal energy per molecule. Such small free-energy differences pose a challenge for modeling and simulation but also offer exciting opportunities to direct the assembly of such materials into morphologies that do not correspond to those of equilibrium bulk structures. Over the past decade, significant progress has been achieved in our ability to guide their self-assembly through the use of confinement, topographical or chemical patterns, and electric fields. In contrast, approaches to guide self-assembly by tailoring the dynamics of structure formation have received less attention. This review discusses opportunities and challenges of recently developed computational strategies to predict the dynamics of self-assembly of polymeric materials on the basis of the underlying free-energy landscape.</description><identifier>ISSN: 1531-7331</identifier><identifier>EISSN: 1545-4118</identifier><identifier>DOI: 10.1146/annurev-matsci-071312-121618</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Computation ; computer simulation ; Dynamics ; free-energy functional ; heterogeneous multiscale method ; MATERIALS SCIENCE ; MATHEMATICS AND COMPUTING ; minimum free-energy path ; Morphology ; Nanocomposites ; Nanomaterials ; Nanostructure ; Onsager coefficient ; Self assembly ; single-chain dynamics ; Strategy</subject><ispartof>Annual review of materials research, 2013-07, Vol.43 (1), p.1-34</ispartof><rights>Copyright © 2013 by Annual Reviews. All rights reserved 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-d7bd1227dd45884331c329bb10a3e1a61bb7fabe1db685edc1212c088aceb4093</citedby><cites>FETCH-LOGICAL-a505t-d7bd1227dd45884331c329bb10a3e1a61bb7fabe1db685edc1212c088aceb4093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-matsci-071312-121618?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-matsci-071312-121618$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,230,314,776,780,881,4168,27901,27902,78223,78224</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1630266$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Marcus</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials</title><title>Annual review of materials research</title><description>Polymeric materials can assemble into a multitude of intricate nanoscale morphologies whose free energy differs by only a fraction of the thermal energy per molecule. Such small free-energy differences pose a challenge for modeling and simulation but also offer exciting opportunities to direct the assembly of such materials into morphologies that do not correspond to those of equilibrium bulk structures. Over the past decade, significant progress has been achieved in our ability to guide their self-assembly through the use of confinement, topographical or chemical patterns, and electric fields. In contrast, approaches to guide self-assembly by tailoring the dynamics of structure formation have received less attention. This review discusses opportunities and challenges of recently developed computational strategies to predict the dynamics of self-assembly of polymeric materials on the basis of the underlying free-energy landscape.</description><subject>Computation</subject><subject>computer simulation</subject><subject>Dynamics</subject><subject>free-energy functional</subject><subject>heterogeneous multiscale method</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>minimum free-energy path</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Onsager coefficient</subject><subject>Self assembly</subject><subject>single-chain dynamics</subject><subject>Strategy</subject><issn>1531-7331</issn><issn>1545-4118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVkc1O3DAUha2qlUqnfQer6oKNwTdOnIzEZjQtPxKoSMDasp0bxlViT22n1bw9HsILsDp3cc79-wj5AfwMoJbn2vs54j826ZysY7wFARWDCiR0H8gJNHXDaoDu47EWwFoh4DP5ktIfzkHKtTwhz9sw7eesswtej3Sz38eg7Q4THUKkeYf058HrydlEw0AfcpxtLjPpZYjTa4g6Tx9wHNgmJZzM6PwzvQ_jYcLoLL3Tuage01fyaSiC3950RZ4ufz1ur9nt76ub7eaW6YY3mfWt6aGq2r6vm66ry75WVGtjgGuBoCUY0w7aIPRGdg32thxbWd512qKp-VqsyPelb0jZqfKVjHZng_doswIpeCVlMZ0upnLs3xlTVpNLFsdRewxzUlCLddtUovxrRS4Wq40hpYiD2kc36XhQwNURgnqDoBYIaoGgFgglvlniR5cei8_h__S-Hi_5xpen</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Müller, Marcus</creator><creator>de Pablo, Juan J</creator><general>Annual Reviews</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201307</creationdate><title>Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials</title><author>Müller, Marcus ; de Pablo, Juan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-d7bd1227dd45884331c329bb10a3e1a61bb7fabe1db685edc1212c088aceb4093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computation</topic><topic>computer simulation</topic><topic>Dynamics</topic><topic>free-energy functional</topic><topic>heterogeneous multiscale method</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>minimum free-energy path</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Onsager coefficient</topic><topic>Self assembly</topic><topic>single-chain dynamics</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Marcus</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Annual review of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Marcus</au><au>de Pablo, Juan J</au><aucorp>Univ. of Chicago, IL (United States)</aucorp><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials</atitle><jtitle>Annual review of materials research</jtitle><date>2013-07</date><risdate>2013</risdate><volume>43</volume><issue>1</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><issn>1531-7331</issn><eissn>1545-4118</eissn><abstract>Polymeric materials can assemble into a multitude of intricate nanoscale morphologies whose free energy differs by only a fraction of the thermal energy per molecule. Such small free-energy differences pose a challenge for modeling and simulation but also offer exciting opportunities to direct the assembly of such materials into morphologies that do not correspond to those of equilibrium bulk structures. Over the past decade, significant progress has been achieved in our ability to guide their self-assembly through the use of confinement, topographical or chemical patterns, and electric fields. In contrast, approaches to guide self-assembly by tailoring the dynamics of structure formation have received less attention. This review discusses opportunities and challenges of recently developed computational strategies to predict the dynamics of self-assembly of polymeric materials on the basis of the underlying free-energy landscape.</abstract><cop>United States</cop><pub>Annual Reviews</pub><doi>10.1146/annurev-matsci-071312-121618</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1531-7331 |
ispartof | Annual review of materials research, 2013-07, Vol.43 (1), p.1-34 |
issn | 1531-7331 1545-4118 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439752373 |
source | Annual Reviews Complete A-Z List |
subjects | Computation computer simulation Dynamics free-energy functional heterogeneous multiscale method MATERIALS SCIENCE MATHEMATICS AND COMPUTING minimum free-energy path Morphology Nanocomposites Nanomaterials Nanostructure Onsager coefficient Self assembly single-chain dynamics Strategy |
title | Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Approaches%20for%20the%20Dynamics%20of%20Structure%20Formation%20in%20Self-Assembling%20Polymeric%20Materials&rft.jtitle=Annual%20review%20of%20materials%20research&rft.au=M%C3%BCller,%20Marcus&rft.aucorp=Univ.%20of%20Chicago,%20IL%20(United%20States)&rft.date=2013-07&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.issn=1531-7331&rft.eissn=1545-4118&rft_id=info:doi/10.1146/annurev-matsci-071312-121618&rft_dat=%3Cproquest_osti_%3E1439752373%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439752373&rft_id=info:pmid/&rfr_iscdi=true |