The onset of multi-valued solutions of a prescribed mean curvature equation with singular non-linearity
The existence and multiplicity of solutions to a quasilinear, elliptic partial differential equation with singular non-linearity is analysed. The partial differential equation is a recently derived variant of a canonical model used in the modelling of micro-electromechanical systems. It is observed...
Gespeichert in:
Veröffentlicht in: | European journal of applied mathematics 2013-10, Vol.24 (5), p.631-656 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 656 |
---|---|
container_issue | 5 |
container_start_page | 631 |
container_title | European journal of applied mathematics |
container_volume | 24 |
creator | BRUBAKER, N. D. LINDSAY, A. E. |
description | The existence and multiplicity of solutions to a quasilinear, elliptic partial differential equation with singular non-linearity is analysed. The partial differential equation is a recently derived variant of a canonical model used in the modelling of micro-electromechanical systems. It is observed that the bifurcation curve of solutions terminates at single dead-end point, beyond which no classical solutions exist. A necessary condition for the existence of solutions is developed, revealing that this dead-end point corresponds to a blow-up in the solution's gradient at a point internal to the domain. By employing a novel asymptotic analysis in terms of two small parameters, an accurate characterization of this dead-end point is obtained. An arc length parameterization of the solution curve can be employed to continue solutions beyond the dead-end point; however, all extra solutions are found to be multi-valued. This analysis therefore suggests that the dead-end is a bifurcation point associated with the onset of multi-valued solutions for the system. |
doi_str_mv | 10.1017/S0956792513000077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439750440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0956792513000077</cupid><sourcerecordid>3052141441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-f28099271efe94931bc01fc6c5ce1db89fdfcf3f86e8342fb12cb59e1a6e906a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gssbAE7MRO4hFVfEmVGChz5Ljn1pUTt3Zc1H-PozIgELfc8Dzv6fQidE3JHSW0un8ngpeVyDktSJqqOkETykqRMZbzUzQZcTbyc3QRwoaQ5FViglaLNWDXBxiw07iLdjDZXtoISxycjYNJbCQSbz0E5U2bSAeyxyr6vRyiBwy7KEcRf5phjYPpV9FKj3vXZ9b0IL0ZDpfoTEsb4Op7T9HH0-Ni9pLN355fZw_zTBWcDJnOayJEXlHQIJgoaKsI1apUXAFdtrXQS610oesS6oLluqW5arkAKksQpJTFFN0e726920UIQ9OZoMBa2YOLoaGsEBUnjJGk3vxSNy76Pn2XrLwUvKZ8tOjRUt6F4EE3W2866Q8NJc1YffOn-pQpvjOya71ZruDH6X9TX04ChzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426958150</pqid></control><display><type>article</type><title>The onset of multi-valued solutions of a prescribed mean curvature equation with singular non-linearity</title><source>Cambridge Journals</source><creator>BRUBAKER, N. D. ; LINDSAY, A. E.</creator><creatorcontrib>BRUBAKER, N. D. ; LINDSAY, A. E.</creatorcontrib><description>The existence and multiplicity of solutions to a quasilinear, elliptic partial differential equation with singular non-linearity is analysed. The partial differential equation is a recently derived variant of a canonical model used in the modelling of micro-electromechanical systems. It is observed that the bifurcation curve of solutions terminates at single dead-end point, beyond which no classical solutions exist. A necessary condition for the existence of solutions is developed, revealing that this dead-end point corresponds to a blow-up in the solution's gradient at a point internal to the domain. By employing a novel asymptotic analysis in terms of two small parameters, an accurate characterization of this dead-end point is obtained. An arc length parameterization of the solution curve can be employed to continue solutions beyond the dead-end point; however, all extra solutions are found to be multi-valued. This analysis therefore suggests that the dead-end is a bifurcation point associated with the onset of multi-valued solutions for the system.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S0956792513000077</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied mathematics ; Asymptotic properties ; Bifurcations ; Curvature ; Linear equations ; Mathematical analysis ; Mathematical models ; Nonlinear equations ; Nonlinearity ; Parametrization ; Partial differential equations</subject><ispartof>European journal of applied mathematics, 2013-10, Vol.24 (5), p.631-656</ispartof><rights>Copyright © Cambridge University Press 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-f28099271efe94931bc01fc6c5ce1db89fdfcf3f86e8342fb12cb59e1a6e906a3</citedby><cites>FETCH-LOGICAL-c350t-f28099271efe94931bc01fc6c5ce1db89fdfcf3f86e8342fb12cb59e1a6e906a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0956792513000077/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>BRUBAKER, N. D.</creatorcontrib><creatorcontrib>LINDSAY, A. E.</creatorcontrib><title>The onset of multi-valued solutions of a prescribed mean curvature equation with singular non-linearity</title><title>European journal of applied mathematics</title><addtitle>Eur. J. Appl. Math</addtitle><description>The existence and multiplicity of solutions to a quasilinear, elliptic partial differential equation with singular non-linearity is analysed. The partial differential equation is a recently derived variant of a canonical model used in the modelling of micro-electromechanical systems. It is observed that the bifurcation curve of solutions terminates at single dead-end point, beyond which no classical solutions exist. A necessary condition for the existence of solutions is developed, revealing that this dead-end point corresponds to a blow-up in the solution's gradient at a point internal to the domain. By employing a novel asymptotic analysis in terms of two small parameters, an accurate characterization of this dead-end point is obtained. An arc length parameterization of the solution curve can be employed to continue solutions beyond the dead-end point; however, all extra solutions are found to be multi-valued. This analysis therefore suggests that the dead-end is a bifurcation point associated with the onset of multi-valued solutions for the system.</description><subject>Applied mathematics</subject><subject>Asymptotic properties</subject><subject>Bifurcations</subject><subject>Curvature</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Parametrization</subject><subject>Partial differential equations</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gssbAE7MRO4hFVfEmVGChz5Ljn1pUTt3Zc1H-PozIgELfc8Dzv6fQidE3JHSW0un8ngpeVyDktSJqqOkETykqRMZbzUzQZcTbyc3QRwoaQ5FViglaLNWDXBxiw07iLdjDZXtoISxycjYNJbCQSbz0E5U2bSAeyxyr6vRyiBwy7KEcRf5phjYPpV9FKj3vXZ9b0IL0ZDpfoTEsb4Op7T9HH0-Ni9pLN355fZw_zTBWcDJnOayJEXlHQIJgoaKsI1apUXAFdtrXQS610oesS6oLluqW5arkAKksQpJTFFN0e726920UIQ9OZoMBa2YOLoaGsEBUnjJGk3vxSNy76Pn2XrLwUvKZ8tOjRUt6F4EE3W2866Q8NJc1YffOn-pQpvjOya71ZruDH6X9TX04ChzI</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>BRUBAKER, N. D.</creator><creator>LINDSAY, A. E.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>201310</creationdate><title>The onset of multi-valued solutions of a prescribed mean curvature equation with singular non-linearity</title><author>BRUBAKER, N. D. ; LINDSAY, A. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-f28099271efe94931bc01fc6c5ce1db89fdfcf3f86e8342fb12cb59e1a6e906a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied mathematics</topic><topic>Asymptotic properties</topic><topic>Bifurcations</topic><topic>Curvature</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Parametrization</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRUBAKER, N. D.</creatorcontrib><creatorcontrib>LINDSAY, A. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRUBAKER, N. D.</au><au>LINDSAY, A. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The onset of multi-valued solutions of a prescribed mean curvature equation with singular non-linearity</atitle><jtitle>European journal of applied mathematics</jtitle><addtitle>Eur. J. Appl. Math</addtitle><date>2013-10</date><risdate>2013</risdate><volume>24</volume><issue>5</issue><spage>631</spage><epage>656</epage><pages>631-656</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>The existence and multiplicity of solutions to a quasilinear, elliptic partial differential equation with singular non-linearity is analysed. The partial differential equation is a recently derived variant of a canonical model used in the modelling of micro-electromechanical systems. It is observed that the bifurcation curve of solutions terminates at single dead-end point, beyond which no classical solutions exist. A necessary condition for the existence of solutions is developed, revealing that this dead-end point corresponds to a blow-up in the solution's gradient at a point internal to the domain. By employing a novel asymptotic analysis in terms of two small parameters, an accurate characterization of this dead-end point is obtained. An arc length parameterization of the solution curve can be employed to continue solutions beyond the dead-end point; however, all extra solutions are found to be multi-valued. This analysis therefore suggests that the dead-end is a bifurcation point associated with the onset of multi-valued solutions for the system.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0956792513000077</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-7925 |
ispartof | European journal of applied mathematics, 2013-10, Vol.24 (5), p.631-656 |
issn | 0956-7925 1469-4425 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439750440 |
source | Cambridge Journals |
subjects | Applied mathematics Asymptotic properties Bifurcations Curvature Linear equations Mathematical analysis Mathematical models Nonlinear equations Nonlinearity Parametrization Partial differential equations |
title | The onset of multi-valued solutions of a prescribed mean curvature equation with singular non-linearity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20onset%20of%20multi-valued%20solutions%20of%20a%20prescribed%20mean%20curvature%20equation%20with%20singular%20non-linearity&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=BRUBAKER,%20N.%20D.&rft.date=2013-10&rft.volume=24&rft.issue=5&rft.spage=631&rft.epage=656&rft.pages=631-656&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S0956792513000077&rft_dat=%3Cproquest_cross%3E3052141441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426958150&rft_id=info:pmid/&rft_cupid=10_1017_S0956792513000077&rfr_iscdi=true |