Ejection of Martian meteorites
— We investigated the transfer of meteorites from Mars to Earth with a combined mineralogical and numerical approach. We used quantitative shock pressure barometry and thermodynamic calculations of post‐shock temperatures to constrain the pressure/temperature conditions for the ejection of Martian m...
Gespeichert in:
Veröffentlicht in: | Meteoritics & planetary science 2005-10, Vol.40 (9-10), p.1393-1411 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1411 |
---|---|
container_issue | 9-10 |
container_start_page | 1393 |
container_title | Meteoritics & planetary science |
container_volume | 40 |
creator | Fritz, Jörg Artemieva, Natalia Greshake, Ansgar |
description | — We investigated the transfer of meteorites from Mars to Earth with a combined mineralogical and numerical approach. We used quantitative shock pressure barometry and thermodynamic calculations of post‐shock temperatures to constrain the pressure/temperature conditions for the ejection of Martian meteorites. The results show that shock pressures allowing the ejection of Martian meteorites range from 5 to 55 GPa, with corresponding post‐shock temperature elevations of 10 to about 1000 °C. With respect to shock pressures and post‐shock temperatures, an ejection of potentially viable organisms in Martian surface rocks seems possible. A calculation of the cooling time in space for the most highly shocked Martian meteorite Allan Hills (ALH) 77005 was performed and yielded a best‐fit for a post‐shock temperature of 1000 °C and a meteoroid size of 0.4 to 0.6 m. The final burial depths of the sub‐volcanic to volcanic Martian rocks as indicated by textures and mineral compositions of meteorites are in good agreement with the postulated size of the potential source region for Martian meteorites during the impact of a small projectile (200 m), as defined by numerical modeling (Artemieva and Ivanov 2004). A comparison of shock pressures and ejection and terrestrial ages indicates that, on average, highly shocked fragments reach Earth‐crossing orbits faster than weakly shocked fragments. If climatic changes on Mars have a significant influence on the atmospheric pressure, they could account for the increase of recorded ejection events of Martian meteorites in the last 5 Ma. |
doi_str_mv | 10.1111/j.1945-5100.2005.tb00409.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439740516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870461131</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5599-cebe2cd8e57dd0f5bc0d932a8278daa187295eac9b5d623b38f8c55ce74469a33</originalsourceid><addsrcrecordid>eNqVkFFLwzAUhYMoOKd_QYa--NKaNEnT-CJzbFPYpuBkj5c0TaG1a2fS4fbvbe3Yg2_el3vgnnO4fAjdEOyTZu5zn0jGPU4w9gOMuV_HGDMs_d0J6h1Pp43GUehJKuQ5unAux5hyQlkPXY9zo-usKgdVOpgrW2eqHKxNbSqb1cZdorNUFc5cHXYffUzGy9GzN3udvoyGM09xLqWnTWwCnUSGiyTBKY81TiQNVBSIKFGKRCKQ3CgtY56EAY1plEaac20EY6FUlPbRXde7sdXX1rga1pnTpihUaaqtA8KoFAxzEjbW2z_WvNrasvkOSCAIl6H4dT10Lm0r56xJYWOztbJ7IBhadJBDywdaPtCigwM62DXhxy78nRVm_48kzIdv741qGryuIXO12R0blP2EUFDBYbWYwmLEVhO-XMET_QETwIOb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1271596716</pqid></control><display><type>article</type><title>Ejection of Martian meteorites</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Fritz, Jörg ; Artemieva, Natalia ; Greshake, Ansgar</creator><creatorcontrib>Fritz, Jörg ; Artemieva, Natalia ; Greshake, Ansgar</creatorcontrib><description>— We investigated the transfer of meteorites from Mars to Earth with a combined mineralogical and numerical approach. We used quantitative shock pressure barometry and thermodynamic calculations of post‐shock temperatures to constrain the pressure/temperature conditions for the ejection of Martian meteorites. The results show that shock pressures allowing the ejection of Martian meteorites range from 5 to 55 GPa, with corresponding post‐shock temperature elevations of 10 to about 1000 °C. With respect to shock pressures and post‐shock temperatures, an ejection of potentially viable organisms in Martian surface rocks seems possible. A calculation of the cooling time in space for the most highly shocked Martian meteorite Allan Hills (ALH) 77005 was performed and yielded a best‐fit for a post‐shock temperature of 1000 °C and a meteoroid size of 0.4 to 0.6 m. The final burial depths of the sub‐volcanic to volcanic Martian rocks as indicated by textures and mineral compositions of meteorites are in good agreement with the postulated size of the potential source region for Martian meteorites during the impact of a small projectile (200 m), as defined by numerical modeling (Artemieva and Ivanov 2004). A comparison of shock pressures and ejection and terrestrial ages indicates that, on average, highly shocked fragments reach Earth‐crossing orbits faster than weakly shocked fragments. If climatic changes on Mars have a significant influence on the atmospheric pressure, they could account for the increase of recorded ejection events of Martian meteorites in the last 5 Ma.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/j.1945-5100.2005.tb00409.x</identifier><identifier>CODEN: MPSCFY</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Barometric pressure ; Ejection ; Fragments ; Mars ; Martian meteorites ; Mathematical models ; Meteorites ; Texture</subject><ispartof>Meteoritics & planetary science, 2005-10, Vol.40 (9-10), p.1393-1411</ispartof><rights>2005 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5599-cebe2cd8e57dd0f5bc0d932a8278daa187295eac9b5d623b38f8c55ce74469a33</citedby><cites>FETCH-LOGICAL-a5599-cebe2cd8e57dd0f5bc0d932a8278daa187295eac9b5d623b38f8c55ce74469a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1945-5100.2005.tb00409.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1945-5100.2005.tb00409.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids></links><search><creatorcontrib>Fritz, Jörg</creatorcontrib><creatorcontrib>Artemieva, Natalia</creatorcontrib><creatorcontrib>Greshake, Ansgar</creatorcontrib><title>Ejection of Martian meteorites</title><title>Meteoritics & planetary science</title><description>— We investigated the transfer of meteorites from Mars to Earth with a combined mineralogical and numerical approach. We used quantitative shock pressure barometry and thermodynamic calculations of post‐shock temperatures to constrain the pressure/temperature conditions for the ejection of Martian meteorites. The results show that shock pressures allowing the ejection of Martian meteorites range from 5 to 55 GPa, with corresponding post‐shock temperature elevations of 10 to about 1000 °C. With respect to shock pressures and post‐shock temperatures, an ejection of potentially viable organisms in Martian surface rocks seems possible. A calculation of the cooling time in space for the most highly shocked Martian meteorite Allan Hills (ALH) 77005 was performed and yielded a best‐fit for a post‐shock temperature of 1000 °C and a meteoroid size of 0.4 to 0.6 m. The final burial depths of the sub‐volcanic to volcanic Martian rocks as indicated by textures and mineral compositions of meteorites are in good agreement with the postulated size of the potential source region for Martian meteorites during the impact of a small projectile (200 m), as defined by numerical modeling (Artemieva and Ivanov 2004). A comparison of shock pressures and ejection and terrestrial ages indicates that, on average, highly shocked fragments reach Earth‐crossing orbits faster than weakly shocked fragments. If climatic changes on Mars have a significant influence on the atmospheric pressure, they could account for the increase of recorded ejection events of Martian meteorites in the last 5 Ma.</description><subject>Barometric pressure</subject><subject>Ejection</subject><subject>Fragments</subject><subject>Mars</subject><subject>Martian meteorites</subject><subject>Mathematical models</subject><subject>Meteorites</subject><subject>Texture</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqVkFFLwzAUhYMoOKd_QYa--NKaNEnT-CJzbFPYpuBkj5c0TaG1a2fS4fbvbe3Yg2_el3vgnnO4fAjdEOyTZu5zn0jGPU4w9gOMuV_HGDMs_d0J6h1Pp43GUehJKuQ5unAux5hyQlkPXY9zo-usKgdVOpgrW2eqHKxNbSqb1cZdorNUFc5cHXYffUzGy9GzN3udvoyGM09xLqWnTWwCnUSGiyTBKY81TiQNVBSIKFGKRCKQ3CgtY56EAY1plEaac20EY6FUlPbRXde7sdXX1rga1pnTpihUaaqtA8KoFAxzEjbW2z_WvNrasvkOSCAIl6H4dT10Lm0r56xJYWOztbJ7IBhadJBDywdaPtCigwM62DXhxy78nRVm_48kzIdv741qGryuIXO12R0blP2EUFDBYbWYwmLEVhO-XMET_QETwIOb</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Fritz, Jörg</creator><creator>Artemieva, Natalia</creator><creator>Greshake, Ansgar</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>200510</creationdate><title>Ejection of Martian meteorites</title><author>Fritz, Jörg ; Artemieva, Natalia ; Greshake, Ansgar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5599-cebe2cd8e57dd0f5bc0d932a8278daa187295eac9b5d623b38f8c55ce74469a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Barometric pressure</topic><topic>Ejection</topic><topic>Fragments</topic><topic>Mars</topic><topic>Martian meteorites</topic><topic>Mathematical models</topic><topic>Meteorites</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fritz, Jörg</creatorcontrib><creatorcontrib>Artemieva, Natalia</creatorcontrib><creatorcontrib>Greshake, Ansgar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics & planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritz, Jörg</au><au>Artemieva, Natalia</au><au>Greshake, Ansgar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ejection of Martian meteorites</atitle><jtitle>Meteoritics & planetary science</jtitle><date>2005-10</date><risdate>2005</risdate><volume>40</volume><issue>9-10</issue><spage>1393</spage><epage>1411</epage><pages>1393-1411</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><coden>MPSCFY</coden><abstract>— We investigated the transfer of meteorites from Mars to Earth with a combined mineralogical and numerical approach. We used quantitative shock pressure barometry and thermodynamic calculations of post‐shock temperatures to constrain the pressure/temperature conditions for the ejection of Martian meteorites. The results show that shock pressures allowing the ejection of Martian meteorites range from 5 to 55 GPa, with corresponding post‐shock temperature elevations of 10 to about 1000 °C. With respect to shock pressures and post‐shock temperatures, an ejection of potentially viable organisms in Martian surface rocks seems possible. A calculation of the cooling time in space for the most highly shocked Martian meteorite Allan Hills (ALH) 77005 was performed and yielded a best‐fit for a post‐shock temperature of 1000 °C and a meteoroid size of 0.4 to 0.6 m. The final burial depths of the sub‐volcanic to volcanic Martian rocks as indicated by textures and mineral compositions of meteorites are in good agreement with the postulated size of the potential source region for Martian meteorites during the impact of a small projectile (200 m), as defined by numerical modeling (Artemieva and Ivanov 2004). A comparison of shock pressures and ejection and terrestrial ages indicates that, on average, highly shocked fragments reach Earth‐crossing orbits faster than weakly shocked fragments. If climatic changes on Mars have a significant influence on the atmospheric pressure, they could account for the increase of recorded ejection events of Martian meteorites in the last 5 Ma.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1945-5100.2005.tb00409.x</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1086-9379 |
ispartof | Meteoritics & planetary science, 2005-10, Vol.40 (9-10), p.1393-1411 |
issn | 1086-9379 1945-5100 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439740516 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Barometric pressure Ejection Fragments Mars Martian meteorites Mathematical models Meteorites Texture |
title | Ejection of Martian meteorites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ejection%20of%20Martian%20meteorites&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Fritz,%20J%C3%B6rg&rft.date=2005-10&rft.volume=40&rft.issue=9-10&rft.spage=1393&rft.epage=1411&rft.pages=1393-1411&rft.issn=1086-9379&rft.eissn=1945-5100&rft.coden=MPSCFY&rft_id=info:doi/10.1111/j.1945-5100.2005.tb00409.x&rft_dat=%3Cproquest_cross%3E2870461131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1271596716&rft_id=info:pmid/&rfr_iscdi=true |