X-ray imaging and diffraction study of strain relaxation in MBE grown SiGe/Si layers

Molecular Beam Epitaxy (MBE) grown, 50‐800 nm thick SiGe layers on Si are studied by two X‐ray complementary techniques: imaging (X‐ray topography) and High Resolution X‐Ray Diffraction. The measured relaxation rates are spreding from as low as 0.01% to over 70%. These results are examined through t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. C 2013-01, Vol.10 (1), p.52-55
Hauptverfasser: Burle, N., Escoubas, S., Kasper, E., Werner, J., Oehme, M., Lyutovich, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 52
container_title Physica status solidi. C
container_volume 10
creator Burle, N.
Escoubas, S.
Kasper, E.
Werner, J.
Oehme, M.
Lyutovich, K.
description Molecular Beam Epitaxy (MBE) grown, 50‐800 nm thick SiGe layers on Si are studied by two X‐ray complementary techniques: imaging (X‐ray topography) and High Resolution X‐Ray Diffraction. The measured relaxation rates are spreding from as low as 0.01% to over 70%. These results are examined through the main models for critical thickness tc calculation, the Matthews and Blakeslee approach concerning misfit dislocations (MD) development from existing dislocations and the People and Bean model for homogeneous MD nucleation. The beginning step of the relaxation is found to fit exactly with the People and Bean model, otherwise larger relaxation is reached after an intermediate weak relaxation stage. This leads to a refined approach of the critical thickness: a critical band [t c inf, t c up] Comparison between observed t c exp and calculated tc indicates that the lower limit of this band can be predicted by equilibrium models, the upper one being linked with multiplication stages (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssc.201200544
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439739382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439739382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-3c32966178b49837afb22eedb6d18070fb839a64f5407c9fa1aa2f52d745ff3b3</originalsourceid><addsrcrecordid>eNqFkM9PwjAYQBejiYhePTfx4mXQX-u6oxBEE0BlGL013daS4tiwhcD-e4sYYrx46tf0vebLC4JrBDsIQtxdOZd3MEQYwojSk6CFGIIhYhSf-pkzHDISofPgwrkFhCSCiLWC2XtoZQPMUs5NNQeyKkBhtLYyX5u6Am69KRpQaz9YaSpgVSl38vvJ38a9AZjbeluB1AxVNzWglI2y7jI407J06urnbAev94NZ_yEcPQ0f-3ejMCec05DkBCeMoZhnNOEkljrDWKkiYwXiMIY64ySRjOqIwjhPtERSYh3hIqaR1iQj7eD28O_K1p8b5dZiaVyuylJWqt44gShJYpIQjj168wdd1Btb-e0EIhj7ZoTFnuocqNzWzlmlxcr6NLYRCIp9ZLGPLI6RvZAchK0pVfMPLZ7TtP_bDQ-ucWu1O7rSfgi_ShyJt8lQwOl0Ql74WPTIF7n1jm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322200367</pqid></control><display><type>article</type><title>X-ray imaging and diffraction study of strain relaxation in MBE grown SiGe/Si layers</title><source>Access via Wiley Online Library</source><creator>Burle, N. ; Escoubas, S. ; Kasper, E. ; Werner, J. ; Oehme, M. ; Lyutovich, K.</creator><creatorcontrib>Burle, N. ; Escoubas, S. ; Kasper, E. ; Werner, J. ; Oehme, M. ; Lyutovich, K.</creatorcontrib><description>Molecular Beam Epitaxy (MBE) grown, 50‐800 nm thick SiGe layers on Si are studied by two X‐ray complementary techniques: imaging (X‐ray topography) and High Resolution X‐Ray Diffraction. The measured relaxation rates are spreding from as low as 0.01% to over 70%. These results are examined through the main models for critical thickness tc calculation, the Matthews and Blakeslee approach concerning misfit dislocations (MD) development from existing dislocations and the People and Bean model for homogeneous MD nucleation. The beginning step of the relaxation is found to fit exactly with the People and Bean model, otherwise larger relaxation is reached after an intermediate weak relaxation stage. This leads to a refined approach of the critical thickness: a critical band [t c inf, t c up] Comparison between observed t c exp and calculated tc indicates that the lower limit of this band can be predicted by equilibrium models, the upper one being linked with multiplication stages (© 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6351</identifier><identifier>EISSN: 1610-1642</identifier><identifier>DOI: 10.1002/pssc.201200544</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Beans ; critical thickness ; Diffraction ; Dislocations ; epitaxial SiGe/Si layers ; Mathematical models ; Molecular beam epitaxy ; relaxation ; Silicon ; Silicon germanides ; X-ray diffraction ; X-ray topography ; X-rays</subject><ispartof>Physica status solidi. C, 2013-01, Vol.10 (1), p.52-55</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-3c32966178b49837afb22eedb6d18070fb839a64f5407c9fa1aa2f52d745ff3b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssc.201200544$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssc.201200544$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Burle, N.</creatorcontrib><creatorcontrib>Escoubas, S.</creatorcontrib><creatorcontrib>Kasper, E.</creatorcontrib><creatorcontrib>Werner, J.</creatorcontrib><creatorcontrib>Oehme, M.</creatorcontrib><creatorcontrib>Lyutovich, K.</creatorcontrib><title>X-ray imaging and diffraction study of strain relaxation in MBE grown SiGe/Si layers</title><title>Physica status solidi. C</title><addtitle>Phys. Status Solidi C</addtitle><description>Molecular Beam Epitaxy (MBE) grown, 50‐800 nm thick SiGe layers on Si are studied by two X‐ray complementary techniques: imaging (X‐ray topography) and High Resolution X‐Ray Diffraction. The measured relaxation rates are spreding from as low as 0.01% to over 70%. These results are examined through the main models for critical thickness tc calculation, the Matthews and Blakeslee approach concerning misfit dislocations (MD) development from existing dislocations and the People and Bean model for homogeneous MD nucleation. The beginning step of the relaxation is found to fit exactly with the People and Bean model, otherwise larger relaxation is reached after an intermediate weak relaxation stage. This leads to a refined approach of the critical thickness: a critical band [t c inf, t c up] Comparison between observed t c exp and calculated tc indicates that the lower limit of this band can be predicted by equilibrium models, the upper one being linked with multiplication stages (© 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>Beans</subject><subject>critical thickness</subject><subject>Diffraction</subject><subject>Dislocations</subject><subject>epitaxial SiGe/Si layers</subject><subject>Mathematical models</subject><subject>Molecular beam epitaxy</subject><subject>relaxation</subject><subject>Silicon</subject><subject>Silicon germanides</subject><subject>X-ray diffraction</subject><subject>X-ray topography</subject><subject>X-rays</subject><issn>1862-6351</issn><issn>1610-1642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwjAYQBejiYhePTfx4mXQX-u6oxBEE0BlGL013daS4tiwhcD-e4sYYrx46tf0vebLC4JrBDsIQtxdOZd3MEQYwojSk6CFGIIhYhSf-pkzHDISofPgwrkFhCSCiLWC2XtoZQPMUs5NNQeyKkBhtLYyX5u6Am69KRpQaz9YaSpgVSl38vvJ38a9AZjbeluB1AxVNzWglI2y7jI407J06urnbAev94NZ_yEcPQ0f-3ejMCec05DkBCeMoZhnNOEkljrDWKkiYwXiMIY64ySRjOqIwjhPtERSYh3hIqaR1iQj7eD28O_K1p8b5dZiaVyuylJWqt44gShJYpIQjj168wdd1Btb-e0EIhj7ZoTFnuocqNzWzlmlxcr6NLYRCIp9ZLGPLI6RvZAchK0pVfMPLZ7TtP_bDQ-ucWu1O7rSfgi_ShyJt8lQwOl0Ql74WPTIF7n1jm0</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Burle, N.</creator><creator>Escoubas, S.</creator><creator>Kasper, E.</creator><creator>Werner, J.</creator><creator>Oehme, M.</creator><creator>Lyutovich, K.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>X-ray imaging and diffraction study of strain relaxation in MBE grown SiGe/Si layers</title><author>Burle, N. ; Escoubas, S. ; Kasper, E. ; Werner, J. ; Oehme, M. ; Lyutovich, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-3c32966178b49837afb22eedb6d18070fb839a64f5407c9fa1aa2f52d745ff3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Beans</topic><topic>critical thickness</topic><topic>Diffraction</topic><topic>Dislocations</topic><topic>epitaxial SiGe/Si layers</topic><topic>Mathematical models</topic><topic>Molecular beam epitaxy</topic><topic>relaxation</topic><topic>Silicon</topic><topic>Silicon germanides</topic><topic>X-ray diffraction</topic><topic>X-ray topography</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burle, N.</creatorcontrib><creatorcontrib>Escoubas, S.</creatorcontrib><creatorcontrib>Kasper, E.</creatorcontrib><creatorcontrib>Werner, J.</creatorcontrib><creatorcontrib>Oehme, M.</creatorcontrib><creatorcontrib>Lyutovich, K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burle, N.</au><au>Escoubas, S.</au><au>Kasper, E.</au><au>Werner, J.</au><au>Oehme, M.</au><au>Lyutovich, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray imaging and diffraction study of strain relaxation in MBE grown SiGe/Si layers</atitle><jtitle>Physica status solidi. C</jtitle><addtitle>Phys. Status Solidi C</addtitle><date>2013-01</date><risdate>2013</risdate><volume>10</volume><issue>1</issue><spage>52</spage><epage>55</epage><pages>52-55</pages><issn>1862-6351</issn><eissn>1610-1642</eissn><abstract>Molecular Beam Epitaxy (MBE) grown, 50‐800 nm thick SiGe layers on Si are studied by two X‐ray complementary techniques: imaging (X‐ray topography) and High Resolution X‐Ray Diffraction. The measured relaxation rates are spreding from as low as 0.01% to over 70%. These results are examined through the main models for critical thickness tc calculation, the Matthews and Blakeslee approach concerning misfit dislocations (MD) development from existing dislocations and the People and Bean model for homogeneous MD nucleation. The beginning step of the relaxation is found to fit exactly with the People and Bean model, otherwise larger relaxation is reached after an intermediate weak relaxation stage. This leads to a refined approach of the critical thickness: a critical band [t c inf, t c up] Comparison between observed t c exp and calculated tc indicates that the lower limit of this band can be predicted by equilibrium models, the upper one being linked with multiplication stages (© 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssc.201200544</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6351
ispartof Physica status solidi. C, 2013-01, Vol.10 (1), p.52-55
issn 1862-6351
1610-1642
language eng
recordid cdi_proquest_miscellaneous_1439739382
source Access via Wiley Online Library
subjects Beans
critical thickness
Diffraction
Dislocations
epitaxial SiGe/Si layers
Mathematical models
Molecular beam epitaxy
relaxation
Silicon
Silicon germanides
X-ray diffraction
X-ray topography
X-rays
title X-ray imaging and diffraction study of strain relaxation in MBE grown SiGe/Si layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20imaging%20and%20diffraction%20study%20of%20strain%20relaxation%20in%20MBE%20grown%20SiGe/Si%20layers&rft.jtitle=Physica%20status%20solidi.%20C&rft.au=Burle,%20N.&rft.date=2013-01&rft.volume=10&rft.issue=1&rft.spage=52&rft.epage=55&rft.pages=52-55&rft.issn=1862-6351&rft.eissn=1610-1642&rft_id=info:doi/10.1002/pssc.201200544&rft_dat=%3Cproquest_cross%3E1439739382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322200367&rft_id=info:pmid/&rfr_iscdi=true