Dielectric Barrier Discharge for Ammonia Production

The leading after-treatment technology for NOx removal process in Diesel engines for stationary and mobile applications is the selective catalytic reduction of oxides of nitrogen [NOx] by ammonia [NH 3 ]. A novel non-thermal plasma electrode with a needle array in a dielectric barrier discharge reac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma chemistry and plasma processing 2013-02, Vol.33 (1), p.337-353
Hauptverfasser: Prieto, Graciela, Takashima, Kazunori, Mizuno, Akira, Prieto, Oscar, Gay, Carlos R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue 1
container_start_page 337
container_title Plasma chemistry and plasma processing
container_volume 33
creator Prieto, Graciela
Takashima, Kazunori
Mizuno, Akira
Prieto, Oscar
Gay, Carlos R.
description The leading after-treatment technology for NOx removal process in Diesel engines for stationary and mobile applications is the selective catalytic reduction of oxides of nitrogen [NOx] by ammonia [NH 3 ]. A novel non-thermal plasma electrode with a needle array in a dielectric barrier discharge reactor, powered by a high frequency neon transformer, is used for the thermal decomposition of solid urea [(NH 2 )CO(NH 2 )] to produce ammonia. The thermolysis of urea produces iso-cyanic acid [HNCO] as a byproduct, besides ammonia, which can react with water in the gas phase, thus giving carbon dioxide and more ammonia. The presence of water fed before and/or after the plasma reactor was studied to assess its effect on the amount of produced ammonia. Results clearly showed that water fed to the entrance of the reactor can efficiently promote the reaction of iso-cyanic acid to produce ammonia and this result can be improved when air is used as carrier gas for 115 V of input voltage to a neon transformer and with a gas flow rate of 4 L/min.
doi_str_mv 10.1007/s11090-012-9428-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439738368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439738368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-89d1ca65ae80711113843332ff4d5a0d4d80a845769fa156daf76e7ab64e91b23</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqHwAdgysgT8L7YzlpYCUiUYYLZcxy6ukrick4Fvj6swc8vd8N67ux9CtwTfE4zlQyIEN7jChFYNp6qiZ6ggtaSVapQ4RwWmeeaM8kt0ldIB4-xiskBsHVzn7AjBlo8GIDgo1yHZLwN7V_oI5bLv4xBM-Q6xnewY4nCNLrzpkrv56wv0uXn6WL1U27fn19VyW1lO-Zg3t8QaURunsCS5mOKMMeo9b2uDW94qbBSvpWi8IbVojZfCSbMT3DVkR9kC3c25R4jfk0uj7vNlruvM4OKUNOGskUwxobKUzFILMSVwXh8h9AZ-NMH6BEjPgHQGpE-A9Cmezp6UtcPegT7ECYb80T-mXwQtZvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439738368</pqid></control><display><type>article</type><title>Dielectric Barrier Discharge for Ammonia Production</title><source>SpringerLink Journals - AutoHoldings</source><creator>Prieto, Graciela ; Takashima, Kazunori ; Mizuno, Akira ; Prieto, Oscar ; Gay, Carlos R.</creator><creatorcontrib>Prieto, Graciela ; Takashima, Kazunori ; Mizuno, Akira ; Prieto, Oscar ; Gay, Carlos R.</creatorcontrib><description>The leading after-treatment technology for NOx removal process in Diesel engines for stationary and mobile applications is the selective catalytic reduction of oxides of nitrogen [NOx] by ammonia [NH 3 ]. A novel non-thermal plasma electrode with a needle array in a dielectric barrier discharge reactor, powered by a high frequency neon transformer, is used for the thermal decomposition of solid urea [(NH 2 )CO(NH 2 )] to produce ammonia. The thermolysis of urea produces iso-cyanic acid [HNCO] as a byproduct, besides ammonia, which can react with water in the gas phase, thus giving carbon dioxide and more ammonia. The presence of water fed before and/or after the plasma reactor was studied to assess its effect on the amount of produced ammonia. Results clearly showed that water fed to the entrance of the reactor can efficiently promote the reaction of iso-cyanic acid to produce ammonia and this result can be improved when air is used as carrier gas for 115 V of input voltage to a neon transformer and with a gas flow rate of 4 L/min.</description><identifier>ISSN: 0272-4324</identifier><identifier>EISSN: 1572-8986</identifier><identifier>DOI: 10.1007/s11090-012-9428-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Ammonia ; Arrays ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Classical Mechanics ; Dielectric barrier discharge ; Electric potential ; Inorganic Chemistry ; Mechanical Engineering ; Neon ; Original Paper ; Reactors ; Transformers ; Ureas</subject><ispartof>Plasma chemistry and plasma processing, 2013-02, Vol.33 (1), p.337-353</ispartof><rights>Springer Science+Business Media New York 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-89d1ca65ae80711113843332ff4d5a0d4d80a845769fa156daf76e7ab64e91b23</citedby><cites>FETCH-LOGICAL-c424t-89d1ca65ae80711113843332ff4d5a0d4d80a845769fa156daf76e7ab64e91b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11090-012-9428-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11090-012-9428-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Prieto, Graciela</creatorcontrib><creatorcontrib>Takashima, Kazunori</creatorcontrib><creatorcontrib>Mizuno, Akira</creatorcontrib><creatorcontrib>Prieto, Oscar</creatorcontrib><creatorcontrib>Gay, Carlos R.</creatorcontrib><title>Dielectric Barrier Discharge for Ammonia Production</title><title>Plasma chemistry and plasma processing</title><addtitle>Plasma Chem Plasma Process</addtitle><description>The leading after-treatment technology for NOx removal process in Diesel engines for stationary and mobile applications is the selective catalytic reduction of oxides of nitrogen [NOx] by ammonia [NH 3 ]. A novel non-thermal plasma electrode with a needle array in a dielectric barrier discharge reactor, powered by a high frequency neon transformer, is used for the thermal decomposition of solid urea [(NH 2 )CO(NH 2 )] to produce ammonia. The thermolysis of urea produces iso-cyanic acid [HNCO] as a byproduct, besides ammonia, which can react with water in the gas phase, thus giving carbon dioxide and more ammonia. The presence of water fed before and/or after the plasma reactor was studied to assess its effect on the amount of produced ammonia. Results clearly showed that water fed to the entrance of the reactor can efficiently promote the reaction of iso-cyanic acid to produce ammonia and this result can be improved when air is used as carrier gas for 115 V of input voltage to a neon transformer and with a gas flow rate of 4 L/min.</description><subject>Ammonia</subject><subject>Arrays</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Dielectric barrier discharge</subject><subject>Electric potential</subject><subject>Inorganic Chemistry</subject><subject>Mechanical Engineering</subject><subject>Neon</subject><subject>Original Paper</subject><subject>Reactors</subject><subject>Transformers</subject><subject>Ureas</subject><issn>0272-4324</issn><issn>1572-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqHwAdgysgT8L7YzlpYCUiUYYLZcxy6ukrick4Fvj6swc8vd8N67ux9CtwTfE4zlQyIEN7jChFYNp6qiZ6ggtaSVapQ4RwWmeeaM8kt0ldIB4-xiskBsHVzn7AjBlo8GIDgo1yHZLwN7V_oI5bLv4xBM-Q6xnewY4nCNLrzpkrv56wv0uXn6WL1U27fn19VyW1lO-Zg3t8QaURunsCS5mOKMMeo9b2uDW94qbBSvpWi8IbVojZfCSbMT3DVkR9kC3c25R4jfk0uj7vNlruvM4OKUNOGskUwxobKUzFILMSVwXh8h9AZ-NMH6BEjPgHQGpE-A9Cmezp6UtcPegT7ECYb80T-mXwQtZvc</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Prieto, Graciela</creator><creator>Takashima, Kazunori</creator><creator>Mizuno, Akira</creator><creator>Prieto, Oscar</creator><creator>Gay, Carlos R.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>Dielectric Barrier Discharge for Ammonia Production</title><author>Prieto, Graciela ; Takashima, Kazunori ; Mizuno, Akira ; Prieto, Oscar ; Gay, Carlos R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-89d1ca65ae80711113843332ff4d5a0d4d80a845769fa156daf76e7ab64e91b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ammonia</topic><topic>Arrays</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Dielectric barrier discharge</topic><topic>Electric potential</topic><topic>Inorganic Chemistry</topic><topic>Mechanical Engineering</topic><topic>Neon</topic><topic>Original Paper</topic><topic>Reactors</topic><topic>Transformers</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prieto, Graciela</creatorcontrib><creatorcontrib>Takashima, Kazunori</creatorcontrib><creatorcontrib>Mizuno, Akira</creatorcontrib><creatorcontrib>Prieto, Oscar</creatorcontrib><creatorcontrib>Gay, Carlos R.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Plasma chemistry and plasma processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prieto, Graciela</au><au>Takashima, Kazunori</au><au>Mizuno, Akira</au><au>Prieto, Oscar</au><au>Gay, Carlos R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric Barrier Discharge for Ammonia Production</atitle><jtitle>Plasma chemistry and plasma processing</jtitle><stitle>Plasma Chem Plasma Process</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>33</volume><issue>1</issue><spage>337</spage><epage>353</epage><pages>337-353</pages><issn>0272-4324</issn><eissn>1572-8986</eissn><abstract>The leading after-treatment technology for NOx removal process in Diesel engines for stationary and mobile applications is the selective catalytic reduction of oxides of nitrogen [NOx] by ammonia [NH 3 ]. A novel non-thermal plasma electrode with a needle array in a dielectric barrier discharge reactor, powered by a high frequency neon transformer, is used for the thermal decomposition of solid urea [(NH 2 )CO(NH 2 )] to produce ammonia. The thermolysis of urea produces iso-cyanic acid [HNCO] as a byproduct, besides ammonia, which can react with water in the gas phase, thus giving carbon dioxide and more ammonia. The presence of water fed before and/or after the plasma reactor was studied to assess its effect on the amount of produced ammonia. Results clearly showed that water fed to the entrance of the reactor can efficiently promote the reaction of iso-cyanic acid to produce ammonia and this result can be improved when air is used as carrier gas for 115 V of input voltage to a neon transformer and with a gas flow rate of 4 L/min.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11090-012-9428-2</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4324
ispartof Plasma chemistry and plasma processing, 2013-02, Vol.33 (1), p.337-353
issn 0272-4324
1572-8986
language eng
recordid cdi_proquest_miscellaneous_1439738368
source SpringerLink Journals - AutoHoldings
subjects Ammonia
Arrays
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Classical Mechanics
Dielectric barrier discharge
Electric potential
Inorganic Chemistry
Mechanical Engineering
Neon
Original Paper
Reactors
Transformers
Ureas
title Dielectric Barrier Discharge for Ammonia Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20Barrier%20Discharge%20for%20Ammonia%20Production&rft.jtitle=Plasma%20chemistry%20and%20plasma%20processing&rft.au=Prieto,%20Graciela&rft.date=2013-02-01&rft.volume=33&rft.issue=1&rft.spage=337&rft.epage=353&rft.pages=337-353&rft.issn=0272-4324&rft.eissn=1572-8986&rft_id=info:doi/10.1007/s11090-012-9428-2&rft_dat=%3Cproquest_cross%3E1439738368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439738368&rft_id=info:pmid/&rfr_iscdi=true