Viscoelastic properties of poly(ε-caprolactone) - hydroxyapatite micro- and nano-composites

Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers for advanced technologies 2013-02, Vol.24 (2), p.144-150
Hauptverfasser: Leung, Linus H., Naguib, Hani E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 2
container_start_page 144
container_title Polymers for advanced technologies
container_volume 24
creator Leung, Linus H.
Naguib, Hani E.
description Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells, the fundamental properties of the biomaterials should be characterized. Furthermore, in order to control the processing of these materials into scaffolds, the characterization of the fundamental properties is also necessary. In this study, the physical, thermal, mechanical, and viscoelastic properties of the PCL‐HA micro‐ and nano‐composites were characterized. Although the addition of filler particles increased the compressive modulus by up to 450%, the thermal and viscoelastic properties were unaffected. Furthermore, although the presence of water plasticized the polymer, the viscoelastic behavior was only minimally affected. Testing the composites under various conditions showed that the addition of HA can strengthen PCL without changing its viscoelastic response. The results found in this study can be used to further understand and approximate the time‐dependent behavior of scaffolds for bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/pat.3061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439735990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439735990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4311-a2ffa955fa29471094d76f150883d308a6b4056906653889159ea54842be915d3</originalsourceid><addsrcrecordid>eNp1kNlKxDAUhosouIKPUBBBL6JZm-ZSxBVxgdG5EcIxTTHaaWrSwemD-Ro-kxkcFARzk-V8fPnPybJtgg8IxvSwg_6A4YIsZWsEK4WIKMny_MwpkoTL1Ww9xheMU03JtezxwUXjbQOxdybvgu9s6J2Nua_zzjfD3ucHMpDeGzC9b-1-jvLnoQp-NkD6yvU2nzgTPMqhrfIWWo-Mn3Q-pkrczFZqaKLdWuwb2f3pyej4HF3dnF0cH10hwxkhCGhdgxKiBqq4TKl5JYuaCFyWrGK4hOKJY1EoXBSClaUiQlkQvOT0yaZLxTayvW9vyvk2tbHXk9SVbRporZ9GTThTkgmlcEJ3_qAvfhralE4TKmlahIlfYeosxmBr3QU3gTBogvV8zDr1rudjTujuQgjRQFMHaI2LPzyVRHAq5kr0zb27xg7_-vTt0WjhXfAu9nb2w0N41YVkUujx9Zk-H8u7UXnJNWNftHyZLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272222135</pqid></control><display><type>article</type><title>Viscoelastic properties of poly(ε-caprolactone) - hydroxyapatite micro- and nano-composites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Leung, Linus H. ; Naguib, Hani E.</creator><creatorcontrib>Leung, Linus H. ; Naguib, Hani E.</creatorcontrib><description>Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells, the fundamental properties of the biomaterials should be characterized. Furthermore, in order to control the processing of these materials into scaffolds, the characterization of the fundamental properties is also necessary. In this study, the physical, thermal, mechanical, and viscoelastic properties of the PCL‐HA micro‐ and nano‐composites were characterized. Although the addition of filler particles increased the compressive modulus by up to 450%, the thermal and viscoelastic properties were unaffected. Furthermore, although the presence of water plasticized the polymer, the viscoelastic behavior was only minimally affected. Testing the composites under various conditions showed that the addition of HA can strengthen PCL without changing its viscoelastic response. The results found in this study can be used to further understand and approximate the time‐dependent behavior of scaffolds for bone tissue engineering. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.3061</identifier><identifier>CODEN: PADTE5</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Biological and medical sciences ; biomaterials ; Biomedical materials ; Bones ; Composites ; Controllers ; Exact sciences and technology ; Forms of application and semi-finished materials ; Hydroxyapatite ; Medical sciences ; nano-composites ; Nanomaterials ; Nanostructure ; poly(ε-caprolactone) ; Polymer industry, paints, wood ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology of polymers ; Technology. Biomaterials. Equipments ; Viscoelasticity</subject><ispartof>Polymers for advanced technologies, 2013-02, Vol.24 (2), p.144-150</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4311-a2ffa955fa29471094d76f150883d308a6b4056906653889159ea54842be915d3</citedby><cites>FETCH-LOGICAL-c4311-a2ffa955fa29471094d76f150883d308a6b4056906653889159ea54842be915d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpat.3061$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpat.3061$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27154255$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Leung, Linus H.</creatorcontrib><creatorcontrib>Naguib, Hani E.</creatorcontrib><title>Viscoelastic properties of poly(ε-caprolactone) - hydroxyapatite micro- and nano-composites</title><title>Polymers for advanced technologies</title><addtitle>Polym. Adv. Technol</addtitle><description>Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells, the fundamental properties of the biomaterials should be characterized. Furthermore, in order to control the processing of these materials into scaffolds, the characterization of the fundamental properties is also necessary. In this study, the physical, thermal, mechanical, and viscoelastic properties of the PCL‐HA micro‐ and nano‐composites were characterized. Although the addition of filler particles increased the compressive modulus by up to 450%, the thermal and viscoelastic properties were unaffected. Furthermore, although the presence of water plasticized the polymer, the viscoelastic behavior was only minimally affected. Testing the composites under various conditions showed that the addition of HA can strengthen PCL without changing its viscoelastic response. The results found in this study can be used to further understand and approximate the time‐dependent behavior of scaffolds for bone tissue engineering. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>biomaterials</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Composites</subject><subject>Controllers</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Hydroxyapatite</subject><subject>Medical sciences</subject><subject>nano-composites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>poly(ε-caprolactone)</subject><subject>Polymer industry, paints, wood</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology of polymers</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Viscoelasticity</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kNlKxDAUhosouIKPUBBBL6JZm-ZSxBVxgdG5EcIxTTHaaWrSwemD-Ro-kxkcFARzk-V8fPnPybJtgg8IxvSwg_6A4YIsZWsEK4WIKMny_MwpkoTL1Ww9xheMU03JtezxwUXjbQOxdybvgu9s6J2Nua_zzjfD3ucHMpDeGzC9b-1-jvLnoQp-NkD6yvU2nzgTPMqhrfIWWo-Mn3Q-pkrczFZqaKLdWuwb2f3pyej4HF3dnF0cH10hwxkhCGhdgxKiBqq4TKl5JYuaCFyWrGK4hOKJY1EoXBSClaUiQlkQvOT0yaZLxTayvW9vyvk2tbHXk9SVbRporZ9GTThTkgmlcEJ3_qAvfhralE4TKmlahIlfYeosxmBr3QU3gTBogvV8zDr1rudjTujuQgjRQFMHaI2LPzyVRHAq5kr0zb27xg7_-vTt0WjhXfAu9nb2w0N41YVkUujx9Zk-H8u7UXnJNWNftHyZLw</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Leung, Linus H.</creator><creator>Naguib, Hani E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201302</creationdate><title>Viscoelastic properties of poly(ε-caprolactone) - hydroxyapatite micro- and nano-composites</title><author>Leung, Linus H. ; Naguib, Hani E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4311-a2ffa955fa29471094d76f150883d308a6b4056906653889159ea54842be915d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>biomaterials</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Composites</topic><topic>Controllers</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Hydroxyapatite</topic><topic>Medical sciences</topic><topic>nano-composites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>poly(ε-caprolactone)</topic><topic>Polymer industry, paints, wood</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology of polymers</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Linus H.</creatorcontrib><creatorcontrib>Naguib, Hani E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Linus H.</au><au>Naguib, Hani E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic properties of poly(ε-caprolactone) - hydroxyapatite micro- and nano-composites</atitle><jtitle>Polymers for advanced technologies</jtitle><addtitle>Polym. Adv. Technol</addtitle><date>2013-02</date><risdate>2013</risdate><volume>24</volume><issue>2</issue><spage>144</spage><epage>150</epage><pages>144-150</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><coden>PADTE5</coden><abstract>Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells, the fundamental properties of the biomaterials should be characterized. Furthermore, in order to control the processing of these materials into scaffolds, the characterization of the fundamental properties is also necessary. In this study, the physical, thermal, mechanical, and viscoelastic properties of the PCL‐HA micro‐ and nano‐composites were characterized. Although the addition of filler particles increased the compressive modulus by up to 450%, the thermal and viscoelastic properties were unaffected. Furthermore, although the presence of water plasticized the polymer, the viscoelastic behavior was only minimally affected. Testing the composites under various conditions showed that the addition of HA can strengthen PCL without changing its viscoelastic response. The results found in this study can be used to further understand and approximate the time‐dependent behavior of scaffolds for bone tissue engineering. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pat.3061</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1042-7147
ispartof Polymers for advanced technologies, 2013-02, Vol.24 (2), p.144-150
issn 1042-7147
1099-1581
language eng
recordid cdi_proquest_miscellaneous_1439735990
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Biological and medical sciences
biomaterials
Biomedical materials
Bones
Composites
Controllers
Exact sciences and technology
Forms of application and semi-finished materials
Hydroxyapatite
Medical sciences
nano-composites
Nanomaterials
Nanostructure
poly(ε-caprolactone)
Polymer industry, paints, wood
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology of polymers
Technology. Biomaterials. Equipments
Viscoelasticity
title Viscoelastic properties of poly(ε-caprolactone) - hydroxyapatite micro- and nano-composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20properties%20of%20poly(%CE%B5-caprolactone)%20-%20hydroxyapatite%20micro-%20and%20nano-composites&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Leung,%20Linus%20H.&rft.date=2013-02&rft.volume=24&rft.issue=2&rft.spage=144&rft.epage=150&rft.pages=144-150&rft.issn=1042-7147&rft.eissn=1099-1581&rft.coden=PADTE5&rft_id=info:doi/10.1002/pat.3061&rft_dat=%3Cproquest_cross%3E1439735990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272222135&rft_id=info:pmid/&rfr_iscdi=true