A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis
SUMMARYThis paper describes an eight‐node, assumed strain, solid‐shell, corotational element for geometrically nonlinear structural analysis. The locally linear kinematics of the element is separated into in‐plane (which is further decoupled into membrane and bending), thickness and transverse shear...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2013-07, Vol.95 (2), p.145-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 2 |
container_start_page | 145 |
container_title | International journal for numerical methods in engineering |
container_volume | 95 |
creator | Mostafa, M. Sivaselvan, M.V. Felippa, C.A. |
description | SUMMARYThis paper describes an eight‐node, assumed strain, solid‐shell, corotational element for geometrically nonlinear structural analysis. The locally linear kinematics of the element is separated into in‐plane (which is further decoupled into membrane and bending), thickness and transverse shear components. This separation allows using any type of membrane quadrilateral formulation for the in‐plane response. Assumed strain fields for the three components are constructed using different approaches. The Assumed Natural Deviatoric Strain approach is used for the in‐plane response, whereas the Assumed Natural Strain approach is used for the thickness and transverse shear components. A strain enhancement based on Enhanced Assumed Strain concepts is also used for the thickness component. The resulting element passes well‐known shell element patch tests and exhibits good performance in a number of challenging benchmark tests. The formulation is extended to the geometric nonlinear regime using an element‐independent corotational approach. Some key properties of the corotational kinematic description are discussed. The element is tested in several well‐known shell benchmarks and compared with other thin‐shell and solid‐shell elements available in the literature, as well as with commercial nonlinear FEM codes. Copyright © 2013 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.4504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439735812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3002571261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4604-da7d9a99255c42b01a78d2bf9d26f687b215fa27d4d1858b0f7dc62d11bcdb053</originalsourceid><addsrcrecordid>eNp10E1PHCEAxnFiauJWm_QjkDRNeugoL8MwHDd2fYm6HtamvREGmBbLgMJMdL-9WCceTDxx4Jd_4AHgM0aHGCFyFAZ7WDNU74AFRoJXiCD-ASzKlaiYaPEe-JjzLUIYM0QXICxhjt6ZKv-13kMdUxzV6GJQHlpvBxtG2KlsDYwBLtc_Vpvv5dhAFQxcLTewjwn-sXGwY3Jaeb-FIQbvglUJ5jFNepxSSanS22aXD8Bur3y2n-ZzH_w8Wd0cn1WX16fnx8vLStcNqiujuBFKCMKYrkmHsOKtIV0vDGn6puUdwaxXhJva4Ja1Heq50Q0xGHfadIjRffDtpXuX4v1k8ygHl3X5oQo2TlnimgpOWYtJoV_e0Ns4pfLeoihHtSD8v5qDOsWck-3lXXKDSluJkXweXpbh5fPwhX6dgyqXSfqkgnb51RPeUI6xKK56cQ_O2-27Pbm-Ws3d2bs82sdXr9I_2XDKmfy1PpW_8clFS5sreUOfAJQ8n0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370492712</pqid></control><display><type>article</type><title>A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mostafa, M. ; Sivaselvan, M.V. ; Felippa, C.A.</creator><creatorcontrib>Mostafa, M. ; Sivaselvan, M.V. ; Felippa, C.A.</creatorcontrib><description>SUMMARYThis paper describes an eight‐node, assumed strain, solid‐shell, corotational element for geometrically nonlinear structural analysis. The locally linear kinematics of the element is separated into in‐plane (which is further decoupled into membrane and bending), thickness and transverse shear components. This separation allows using any type of membrane quadrilateral formulation for the in‐plane response. Assumed strain fields for the three components are constructed using different approaches. The Assumed Natural Deviatoric Strain approach is used for the in‐plane response, whereas the Assumed Natural Strain approach is used for the thickness and transverse shear components. A strain enhancement based on Enhanced Assumed Strain concepts is also used for the thickness component. The resulting element passes well‐known shell element patch tests and exhibits good performance in a number of challenging benchmark tests. The formulation is extended to the geometric nonlinear regime using an element‐independent corotational approach. Some key properties of the corotational kinematic description are discussed. The element is tested in several well‐known shell benchmarks and compared with other thin‐shell and solid‐shell elements available in the literature, as well as with commercial nonlinear FEM codes. Copyright © 2013 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4504</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>ANDES ; ANS ; corotational ; EAS ; Exact sciences and technology ; Finite element method ; Fundamental areas of phenomenology (including applications) ; Kinematics ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Nonlinearity ; Numerical analysis. Scientific computation ; Physics ; Sciences and techniques of general use ; Shear ; Shells ; Solid mechanics ; solid shell ; Static elasticity (thermoelasticity...) ; Strain ; Structural analysis ; Structural and continuum mechanics</subject><ispartof>International journal for numerical methods in engineering, 2013-07, Vol.95 (2), p.145-180</ispartof><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4604-da7d9a99255c42b01a78d2bf9d26f687b215fa27d4d1858b0f7dc62d11bcdb053</citedby><cites>FETCH-LOGICAL-c4604-da7d9a99255c42b01a78d2bf9d26f687b215fa27d4d1858b0f7dc62d11bcdb053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4504$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4504$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27637119$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mostafa, M.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><creatorcontrib>Felippa, C.A.</creatorcontrib><title>A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARYThis paper describes an eight‐node, assumed strain, solid‐shell, corotational element for geometrically nonlinear structural analysis. The locally linear kinematics of the element is separated into in‐plane (which is further decoupled into membrane and bending), thickness and transverse shear components. This separation allows using any type of membrane quadrilateral formulation for the in‐plane response. Assumed strain fields for the three components are constructed using different approaches. The Assumed Natural Deviatoric Strain approach is used for the in‐plane response, whereas the Assumed Natural Strain approach is used for the thickness and transverse shear components. A strain enhancement based on Enhanced Assumed Strain concepts is also used for the thickness component. The resulting element passes well‐known shell element patch tests and exhibits good performance in a number of challenging benchmark tests. The formulation is extended to the geometric nonlinear regime using an element‐independent corotational approach. Some key properties of the corotational kinematic description are discussed. The element is tested in several well‐known shell benchmarks and compared with other thin‐shell and solid‐shell elements available in the literature, as well as with commercial nonlinear FEM codes. Copyright © 2013 John Wiley & Sons, Ltd.</description><subject>ANDES</subject><subject>ANS</subject><subject>corotational</subject><subject>EAS</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Nonlinearity</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Shear</subject><subject>Shells</subject><subject>Solid mechanics</subject><subject>solid shell</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Strain</subject><subject>Structural analysis</subject><subject>Structural and continuum mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10E1PHCEAxnFiauJWm_QjkDRNeugoL8MwHDd2fYm6HtamvREGmBbLgMJMdL-9WCceTDxx4Jd_4AHgM0aHGCFyFAZ7WDNU74AFRoJXiCD-ASzKlaiYaPEe-JjzLUIYM0QXICxhjt6ZKv-13kMdUxzV6GJQHlpvBxtG2KlsDYwBLtc_Vpvv5dhAFQxcLTewjwn-sXGwY3Jaeb-FIQbvglUJ5jFNepxSSanS22aXD8Bur3y2n-ZzH_w8Wd0cn1WX16fnx8vLStcNqiujuBFKCMKYrkmHsOKtIV0vDGn6puUdwaxXhJva4Ja1Heq50Q0xGHfadIjRffDtpXuX4v1k8ygHl3X5oQo2TlnimgpOWYtJoV_e0Ns4pfLeoihHtSD8v5qDOsWck-3lXXKDSluJkXweXpbh5fPwhX6dgyqXSfqkgnb51RPeUI6xKK56cQ_O2-27Pbm-Ws3d2bs82sdXr9I_2XDKmfy1PpW_8clFS5sreUOfAJQ8n0w</recordid><startdate>20130713</startdate><enddate>20130713</enddate><creator>Mostafa, M.</creator><creator>Sivaselvan, M.V.</creator><creator>Felippa, C.A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130713</creationdate><title>A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis</title><author>Mostafa, M. ; Sivaselvan, M.V. ; Felippa, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4604-da7d9a99255c42b01a78d2bf9d26f687b215fa27d4d1858b0f7dc62d11bcdb053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ANDES</topic><topic>ANS</topic><topic>corotational</topic><topic>EAS</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Nonlinearity</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Shear</topic><topic>Shells</topic><topic>Solid mechanics</topic><topic>solid shell</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Strain</topic><topic>Structural analysis</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mostafa, M.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><creatorcontrib>Felippa, C.A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mostafa, M.</au><au>Sivaselvan, M.V.</au><au>Felippa, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2013-07-13</date><risdate>2013</risdate><volume>95</volume><issue>2</issue><spage>145</spage><epage>180</epage><pages>145-180</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARYThis paper describes an eight‐node, assumed strain, solid‐shell, corotational element for geometrically nonlinear structural analysis. The locally linear kinematics of the element is separated into in‐plane (which is further decoupled into membrane and bending), thickness and transverse shear components. This separation allows using any type of membrane quadrilateral formulation for the in‐plane response. Assumed strain fields for the three components are constructed using different approaches. The Assumed Natural Deviatoric Strain approach is used for the in‐plane response, whereas the Assumed Natural Strain approach is used for the thickness and transverse shear components. A strain enhancement based on Enhanced Assumed Strain concepts is also used for the thickness component. The resulting element passes well‐known shell element patch tests and exhibits good performance in a number of challenging benchmark tests. The formulation is extended to the geometric nonlinear regime using an element‐independent corotational approach. Some key properties of the corotational kinematic description are discussed. The element is tested in several well‐known shell benchmarks and compared with other thin‐shell and solid‐shell elements available in the literature, as well as with commercial nonlinear FEM codes. Copyright © 2013 John Wiley & Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4504</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2013-07, Vol.95 (2), p.145-180 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439735812 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | ANDES ANS corotational EAS Exact sciences and technology Finite element method Fundamental areas of phenomenology (including applications) Kinematics Mathematical models Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) Nonlinearity Numerical analysis. Scientific computation Physics Sciences and techniques of general use Shear Shells Solid mechanics solid shell Static elasticity (thermoelasticity...) Strain Structural analysis Structural and continuum mechanics |
title | A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20solid-shell%20corotational%20element%20based%20on%20ANDES,%20ANS%20and%20EAS%20for%20geometrically%20nonlinear%20structural%20analysis&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Mostafa,%20M.&rft.date=2013-07-13&rft.volume=95&rft.issue=2&rft.spage=145&rft.epage=180&rft.pages=145-180&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4504&rft_dat=%3Cproquest_cross%3E3002571261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370492712&rft_id=info:pmid/&rfr_iscdi=true |