A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis

SUMMARYThis paper describes an eight‐node, assumed strain, solid‐shell, corotational element for geometrically nonlinear structural analysis. The locally linear kinematics of the element is separated into in‐plane (which is further decoupled into membrane and bending), thickness and transverse shear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2013-07, Vol.95 (2), p.145-180
Hauptverfasser: Mostafa, M., Sivaselvan, M.V., Felippa, C.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 2
container_start_page 145
container_title International journal for numerical methods in engineering
container_volume 95
creator Mostafa, M.
Sivaselvan, M.V.
Felippa, C.A.
description SUMMARYThis paper describes an eight‐node, assumed strain, solid‐shell, corotational element for geometrically nonlinear structural analysis. The locally linear kinematics of the element is separated into in‐plane (which is further decoupled into membrane and bending), thickness and transverse shear components. This separation allows using any type of membrane quadrilateral formulation for the in‐plane response. Assumed strain fields for the three components are constructed using different approaches. The Assumed Natural Deviatoric Strain approach is used for the in‐plane response, whereas the Assumed Natural Strain approach is used for the thickness and transverse shear components. A strain enhancement based on Enhanced Assumed Strain concepts is also used for the thickness component. The resulting element passes well‐known shell element patch tests and exhibits good performance in a number of challenging benchmark tests. The formulation is extended to the geometric nonlinear regime using an element‐independent corotational approach. Some key properties of the corotational kinematic description are discussed. The element is tested in several well‐known shell benchmarks and compared with other thin‐shell and solid‐shell elements available in the literature, as well as with commercial nonlinear FEM codes. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.4504
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439735812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3002571261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4604-da7d9a99255c42b01a78d2bf9d26f687b215fa27d4d1858b0f7dc62d11bcdb053</originalsourceid><addsrcrecordid>eNp10E1PHCEAxnFiauJWm_QjkDRNeugoL8MwHDd2fYm6HtamvREGmBbLgMJMdL-9WCceTDxx4Jd_4AHgM0aHGCFyFAZ7WDNU74AFRoJXiCD-ASzKlaiYaPEe-JjzLUIYM0QXICxhjt6ZKv-13kMdUxzV6GJQHlpvBxtG2KlsDYwBLtc_Vpvv5dhAFQxcLTewjwn-sXGwY3Jaeb-FIQbvglUJ5jFNepxSSanS22aXD8Bur3y2n-ZzH_w8Wd0cn1WX16fnx8vLStcNqiujuBFKCMKYrkmHsOKtIV0vDGn6puUdwaxXhJva4Ja1Heq50Q0xGHfadIjRffDtpXuX4v1k8ygHl3X5oQo2TlnimgpOWYtJoV_e0Ns4pfLeoihHtSD8v5qDOsWck-3lXXKDSluJkXweXpbh5fPwhX6dgyqXSfqkgnb51RPeUI6xKK56cQ_O2-27Pbm-Ws3d2bs82sdXr9I_2XDKmfy1PpW_8clFS5sreUOfAJQ8n0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370492712</pqid></control><display><type>article</type><title>A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mostafa, M. ; Sivaselvan, M.V. ; Felippa, C.A.</creator><creatorcontrib>Mostafa, M. ; Sivaselvan, M.V. ; Felippa, C.A.</creatorcontrib><description>SUMMARYThis paper describes an eight‐node, assumed strain, solid‐shell, corotational element for geometrically nonlinear structural analysis. The locally linear kinematics of the element is separated into in‐plane (which is further decoupled into membrane and bending), thickness and transverse shear components. This separation allows using any type of membrane quadrilateral formulation for the in‐plane response. Assumed strain fields for the three components are constructed using different approaches. The Assumed Natural Deviatoric Strain approach is used for the in‐plane response, whereas the Assumed Natural Strain approach is used for the thickness and transverse shear components. A strain enhancement based on Enhanced Assumed Strain concepts is also used for the thickness component. The resulting element passes well‐known shell element patch tests and exhibits good performance in a number of challenging benchmark tests. The formulation is extended to the geometric nonlinear regime using an element‐independent corotational approach. Some key properties of the corotational kinematic description are discussed. The element is tested in several well‐known shell benchmarks and compared with other thin‐shell and solid‐shell elements available in the literature, as well as with commercial nonlinear FEM codes. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4504</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>ANDES ; ANS ; corotational ; EAS ; Exact sciences and technology ; Finite element method ; Fundamental areas of phenomenology (including applications) ; Kinematics ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Nonlinearity ; Numerical analysis. Scientific computation ; Physics ; Sciences and techniques of general use ; Shear ; Shells ; Solid mechanics ; solid shell ; Static elasticity (thermoelasticity...) ; Strain ; Structural analysis ; Structural and continuum mechanics</subject><ispartof>International journal for numerical methods in engineering, 2013-07, Vol.95 (2), p.145-180</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4604-da7d9a99255c42b01a78d2bf9d26f687b215fa27d4d1858b0f7dc62d11bcdb053</citedby><cites>FETCH-LOGICAL-c4604-da7d9a99255c42b01a78d2bf9d26f687b215fa27d4d1858b0f7dc62d11bcdb053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4504$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4504$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27637119$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mostafa, M.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><creatorcontrib>Felippa, C.A.</creatorcontrib><title>A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARYThis paper describes an eight‐node, assumed strain, solid‐shell, corotational element for geometrically nonlinear structural analysis. The locally linear kinematics of the element is separated into in‐plane (which is further decoupled into membrane and bending), thickness and transverse shear components. This separation allows using any type of membrane quadrilateral formulation for the in‐plane response. Assumed strain fields for the three components are constructed using different approaches. The Assumed Natural Deviatoric Strain approach is used for the in‐plane response, whereas the Assumed Natural Strain approach is used for the thickness and transverse shear components. A strain enhancement based on Enhanced Assumed Strain concepts is also used for the thickness component. The resulting element passes well‐known shell element patch tests and exhibits good performance in a number of challenging benchmark tests. The formulation is extended to the geometric nonlinear regime using an element‐independent corotational approach. Some key properties of the corotational kinematic description are discussed. The element is tested in several well‐known shell benchmarks and compared with other thin‐shell and solid‐shell elements available in the literature, as well as with commercial nonlinear FEM codes. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>ANDES</subject><subject>ANS</subject><subject>corotational</subject><subject>EAS</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Nonlinearity</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Shear</subject><subject>Shells</subject><subject>Solid mechanics</subject><subject>solid shell</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Strain</subject><subject>Structural analysis</subject><subject>Structural and continuum mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10E1PHCEAxnFiauJWm_QjkDRNeugoL8MwHDd2fYm6HtamvREGmBbLgMJMdL-9WCceTDxx4Jd_4AHgM0aHGCFyFAZ7WDNU74AFRoJXiCD-ASzKlaiYaPEe-JjzLUIYM0QXICxhjt6ZKv-13kMdUxzV6GJQHlpvBxtG2KlsDYwBLtc_Vpvv5dhAFQxcLTewjwn-sXGwY3Jaeb-FIQbvglUJ5jFNepxSSanS22aXD8Bur3y2n-ZzH_w8Wd0cn1WX16fnx8vLStcNqiujuBFKCMKYrkmHsOKtIV0vDGn6puUdwaxXhJva4Ja1Heq50Q0xGHfadIjRffDtpXuX4v1k8ygHl3X5oQo2TlnimgpOWYtJoV_e0Ns4pfLeoihHtSD8v5qDOsWck-3lXXKDSluJkXweXpbh5fPwhX6dgyqXSfqkgnb51RPeUI6xKK56cQ_O2-27Pbm-Ws3d2bs82sdXr9I_2XDKmfy1PpW_8clFS5sreUOfAJQ8n0w</recordid><startdate>20130713</startdate><enddate>20130713</enddate><creator>Mostafa, M.</creator><creator>Sivaselvan, M.V.</creator><creator>Felippa, C.A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130713</creationdate><title>A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis</title><author>Mostafa, M. ; Sivaselvan, M.V. ; Felippa, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4604-da7d9a99255c42b01a78d2bf9d26f687b215fa27d4d1858b0f7dc62d11bcdb053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ANDES</topic><topic>ANS</topic><topic>corotational</topic><topic>EAS</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Nonlinearity</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Shear</topic><topic>Shells</topic><topic>Solid mechanics</topic><topic>solid shell</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Strain</topic><topic>Structural analysis</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mostafa, M.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><creatorcontrib>Felippa, C.A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mostafa, M.</au><au>Sivaselvan, M.V.</au><au>Felippa, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2013-07-13</date><risdate>2013</risdate><volume>95</volume><issue>2</issue><spage>145</spage><epage>180</epage><pages>145-180</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARYThis paper describes an eight‐node, assumed strain, solid‐shell, corotational element for geometrically nonlinear structural analysis. The locally linear kinematics of the element is separated into in‐plane (which is further decoupled into membrane and bending), thickness and transverse shear components. This separation allows using any type of membrane quadrilateral formulation for the in‐plane response. Assumed strain fields for the three components are constructed using different approaches. The Assumed Natural Deviatoric Strain approach is used for the in‐plane response, whereas the Assumed Natural Strain approach is used for the thickness and transverse shear components. A strain enhancement based on Enhanced Assumed Strain concepts is also used for the thickness component. The resulting element passes well‐known shell element patch tests and exhibits good performance in a number of challenging benchmark tests. The formulation is extended to the geometric nonlinear regime using an element‐independent corotational approach. Some key properties of the corotational kinematic description are discussed. The element is tested in several well‐known shell benchmarks and compared with other thin‐shell and solid‐shell elements available in the literature, as well as with commercial nonlinear FEM codes. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4504</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2013-07, Vol.95 (2), p.145-180
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_1439735812
source Wiley Online Library Journals Frontfile Complete
subjects ANDES
ANS
corotational
EAS
Exact sciences and technology
Finite element method
Fundamental areas of phenomenology (including applications)
Kinematics
Mathematical models
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Nonlinearity
Numerical analysis. Scientific computation
Physics
Sciences and techniques of general use
Shear
Shells
Solid mechanics
solid shell
Static elasticity (thermoelasticity...)
Strain
Structural analysis
Structural and continuum mechanics
title A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20solid-shell%20corotational%20element%20based%20on%20ANDES,%20ANS%20and%20EAS%20for%20geometrically%20nonlinear%20structural%20analysis&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Mostafa,%20M.&rft.date=2013-07-13&rft.volume=95&rft.issue=2&rft.spage=145&rft.epage=180&rft.pages=145-180&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4504&rft_dat=%3Cproquest_cross%3E3002571261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370492712&rft_id=info:pmid/&rfr_iscdi=true