Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles

Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene–maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2012-08, Vol.14 (8), p.1-24, Article 1075
Hauptverfasser: Samyn, Pieter, Schoukens, Gustaaf, Stanssens, Dirk, Vonck, Leo, Van den Abbeele, Henk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 8
container_start_page 1
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 14
creator Samyn, Pieter
Schoukens, Gustaaf
Stanssens, Dirk
Vonck, Leo
Van den Abbeele, Henk
description Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene–maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during ammonolysis of the anhydride moieties and increase the maximum solid content of the dispersed imidized SMA to at least 50 wt%, compared to a maximum of 35 wt% for pure imidized SMA. The viscosity of imidized SMA with polyunsaturated oils was generally larger than for monosaturated oils, but it was highest for COs due to high contents of hydroxyl groups. Depending on the oil reactivity, homogeneous or core–shell nanoparticles with 20–60 nm diameters formed. The interactions of oil and organic phase were studied by Fourier-transform infrared spectroscopy, indicating qualitative variances between different oils, the fraction imidized SMA and remaining fraction of ammonolyzed SMA without leakage of oil upon diluting the dispersion and precipitation at low pH. A quantitative analysis with calculation of imide contents, amounts of reacted oil and chemical interactions was made by Fourier-transform-Raman spectroscopy suggesting that most interactions take place around the unsaturated oil moieties and ammonolyzed anhydride.
doi_str_mv 10.1007/s11051-012-1075-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439733175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889022821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-785d16a1848b30b85414c27fd11f0b97fc359713709cd7257b8e3014e164a4683</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhosouH78AG8BL16qM_lo0qOIHwuCFwVvIU3TNVKTmnQF_71Z1oMIgqeZw_O-zPBU1QnCOQLIi4wIAmtAWiNIUdOdaoFC0lq1zfNu2ZlSNciG71cHOb8CYENbuqjMMtiYppjM7MOK9H4YXHJhJh9u5WbTjY5EP2biwxyJCcS8r11c5wLmyaXsYyBxIC-fXfI9iWllgrckmBAnk2ZvR5ePqr3BjNkdf8_D6unm-vHqrr5_uF1eXd7XlmM711KJHhuDiquOQacER26pHHrEAbpWDpaJViKT0NpeUiE75Rggd9hwwxvFDquzbe-UYjkyz_rNZ-vG0YTNxRo5ayVjKMU_UVTACnr6C32N6xTKIxqpEg1VgFAo3FI2xZyTG_SU_JtJnxpBb_zorR9d_OiNH01Lhm4zubBh5dKP5j9DXyE-keQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285628010</pqid></control><display><type>article</type><title>Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Samyn, Pieter ; Schoukens, Gustaaf ; Stanssens, Dirk ; Vonck, Leo ; Van den Abbeele, Henk</creator><creatorcontrib>Samyn, Pieter ; Schoukens, Gustaaf ; Stanssens, Dirk ; Vonck, Leo ; Van den Abbeele, Henk</creatorcontrib><description>Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene–maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during ammonolysis of the anhydride moieties and increase the maximum solid content of the dispersed imidized SMA to at least 50 wt%, compared to a maximum of 35 wt% for pure imidized SMA. The viscosity of imidized SMA with polyunsaturated oils was generally larger than for monosaturated oils, but it was highest for COs due to high contents of hydroxyl groups. Depending on the oil reactivity, homogeneous or core–shell nanoparticles with 20–60 nm diameters formed. The interactions of oil and organic phase were studied by Fourier-transform infrared spectroscopy, indicating qualitative variances between different oils, the fraction imidized SMA and remaining fraction of ammonolyzed SMA without leakage of oil upon diluting the dispersion and precipitation at low pH. A quantitative analysis with calculation of imide contents, amounts of reacted oil and chemical interactions was made by Fourier-transform-Raman spectroscopy suggesting that most interactions take place around the unsaturated oil moieties and ammonolyzed anhydride.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-012-1075-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Ammonium ; Anhydrides ; Carbon monoxide ; Castor oil ; Characterization and Evaluation of Materials ; Chemical interactions ; Chemistry and Materials Science ; Dispersions ; Edible oils ; Infrared spectroscopy ; Inorganic Chemistry ; Lasers ; Materials Science ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Polystyrene resins ; Rapeseed oil ; Research Paper ; Shape memory alloys ; Styrene ; Sunflower oil ; Vegetable oils ; Vegetables ; Viscosity</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2012-08, Vol.14 (8), p.1-24, Article 1075</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-785d16a1848b30b85414c27fd11f0b97fc359713709cd7257b8e3014e164a4683</citedby><cites>FETCH-LOGICAL-c419t-785d16a1848b30b85414c27fd11f0b97fc359713709cd7257b8e3014e164a4683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-012-1075-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-012-1075-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Samyn, Pieter</creatorcontrib><creatorcontrib>Schoukens, Gustaaf</creatorcontrib><creatorcontrib>Stanssens, Dirk</creatorcontrib><creatorcontrib>Vonck, Leo</creatorcontrib><creatorcontrib>Van den Abbeele, Henk</creatorcontrib><title>Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene–maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during ammonolysis of the anhydride moieties and increase the maximum solid content of the dispersed imidized SMA to at least 50 wt%, compared to a maximum of 35 wt% for pure imidized SMA. The viscosity of imidized SMA with polyunsaturated oils was generally larger than for monosaturated oils, but it was highest for COs due to high contents of hydroxyl groups. Depending on the oil reactivity, homogeneous or core–shell nanoparticles with 20–60 nm diameters formed. The interactions of oil and organic phase were studied by Fourier-transform infrared spectroscopy, indicating qualitative variances between different oils, the fraction imidized SMA and remaining fraction of ammonolyzed SMA without leakage of oil upon diluting the dispersion and precipitation at low pH. A quantitative analysis with calculation of imide contents, amounts of reacted oil and chemical interactions was made by Fourier-transform-Raman spectroscopy suggesting that most interactions take place around the unsaturated oil moieties and ammonolyzed anhydride.</description><subject>Ammonium</subject><subject>Anhydrides</subject><subject>Carbon monoxide</subject><subject>Castor oil</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical interactions</subject><subject>Chemistry and Materials Science</subject><subject>Dispersions</subject><subject>Edible oils</subject><subject>Infrared spectroscopy</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Polystyrene resins</subject><subject>Rapeseed oil</subject><subject>Research Paper</subject><subject>Shape memory alloys</subject><subject>Styrene</subject><subject>Sunflower oil</subject><subject>Vegetable oils</subject><subject>Vegetables</subject><subject>Viscosity</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1LxDAQhosouH78AG8BL16qM_lo0qOIHwuCFwVvIU3TNVKTmnQF_71Z1oMIgqeZw_O-zPBU1QnCOQLIi4wIAmtAWiNIUdOdaoFC0lq1zfNu2ZlSNciG71cHOb8CYENbuqjMMtiYppjM7MOK9H4YXHJhJh9u5WbTjY5EP2biwxyJCcS8r11c5wLmyaXsYyBxIC-fXfI9iWllgrckmBAnk2ZvR5ePqr3BjNkdf8_D6unm-vHqrr5_uF1eXd7XlmM711KJHhuDiquOQacER26pHHrEAbpWDpaJViKT0NpeUiE75Rggd9hwwxvFDquzbe-UYjkyz_rNZ-vG0YTNxRo5ayVjKMU_UVTACnr6C32N6xTKIxqpEg1VgFAo3FI2xZyTG_SU_JtJnxpBb_zorR9d_OiNH01Lhm4zubBh5dKP5j9DXyE-keQ</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Samyn, Pieter</creator><creator>Schoukens, Gustaaf</creator><creator>Stanssens, Dirk</creator><creator>Vonck, Leo</creator><creator>Van den Abbeele, Henk</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120801</creationdate><title>Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles</title><author>Samyn, Pieter ; Schoukens, Gustaaf ; Stanssens, Dirk ; Vonck, Leo ; Van den Abbeele, Henk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-785d16a1848b30b85414c27fd11f0b97fc359713709cd7257b8e3014e164a4683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ammonium</topic><topic>Anhydrides</topic><topic>Carbon monoxide</topic><topic>Castor oil</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical interactions</topic><topic>Chemistry and Materials Science</topic><topic>Dispersions</topic><topic>Edible oils</topic><topic>Infrared spectroscopy</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Polystyrene resins</topic><topic>Rapeseed oil</topic><topic>Research Paper</topic><topic>Shape memory alloys</topic><topic>Styrene</topic><topic>Sunflower oil</topic><topic>Vegetable oils</topic><topic>Vegetables</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Samyn, Pieter</creatorcontrib><creatorcontrib>Schoukens, Gustaaf</creatorcontrib><creatorcontrib>Stanssens, Dirk</creatorcontrib><creatorcontrib>Vonck, Leo</creatorcontrib><creatorcontrib>Van den Abbeele, Henk</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samyn, Pieter</au><au>Schoukens, Gustaaf</au><au>Stanssens, Dirk</au><au>Vonck, Leo</au><au>Van den Abbeele, Henk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>14</volume><issue>8</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><artnum>1075</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene–maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during ammonolysis of the anhydride moieties and increase the maximum solid content of the dispersed imidized SMA to at least 50 wt%, compared to a maximum of 35 wt% for pure imidized SMA. The viscosity of imidized SMA with polyunsaturated oils was generally larger than for monosaturated oils, but it was highest for COs due to high contents of hydroxyl groups. Depending on the oil reactivity, homogeneous or core–shell nanoparticles with 20–60 nm diameters formed. The interactions of oil and organic phase were studied by Fourier-transform infrared spectroscopy, indicating qualitative variances between different oils, the fraction imidized SMA and remaining fraction of ammonolyzed SMA without leakage of oil upon diluting the dispersion and precipitation at low pH. A quantitative analysis with calculation of imide contents, amounts of reacted oil and chemical interactions was made by Fourier-transform-Raman spectroscopy suggesting that most interactions take place around the unsaturated oil moieties and ammonolyzed anhydride.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-012-1075-2</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2012-08, Vol.14 (8), p.1-24, Article 1075
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_miscellaneous_1439733175
source SpringerLink Journals - AutoHoldings
subjects Ammonium
Anhydrides
Carbon monoxide
Castor oil
Characterization and Evaluation of Materials
Chemical interactions
Chemistry and Materials Science
Dispersions
Edible oils
Infrared spectroscopy
Inorganic Chemistry
Lasers
Materials Science
Nanoparticles
Nanotechnology
Optical Devices
Optics
Photonics
Physical Chemistry
Polystyrene resins
Rapeseed oil
Research Paper
Shape memory alloys
Styrene
Sunflower oil
Vegetable oils
Vegetables
Viscosity
title Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20different%20vegetable%20oils%20into%20an%20aqueous%20dispersion%20of%20hybrid%20organic%20nanoparticles&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Samyn,%20Pieter&rft.date=2012-08-01&rft.volume=14&rft.issue=8&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.artnum=1075&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-012-1075-2&rft_dat=%3Cproquest_cross%3E2889022821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1285628010&rft_id=info:pmid/&rfr_iscdi=true