Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process
The generation of copper nanoparticles in an arc furnace by the evaporation/condensation method is systematically investigated. The evaporation/condensation process is advantageous because it allows direct synthesis using pure metals as starting materials avoiding reactions of expensive and potentia...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2012-07, Vol.14 (7), p.1-16, Article 926 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 14 |
creator | Förster, Henning Wolfrum, Christian Peukert, Wolfgang |
description | The generation of copper nanoparticles in an arc furnace by the evaporation/condensation method is systematically investigated. The evaporation/condensation process is advantageous because it allows direct synthesis using pure metals as starting materials avoiding reactions of expensive and potentially poisonous precursors. In the presented system, a transferred direct current arc provides the energy for evaporation of the metal target. In order to prevent an oxidation of the particles in the process, the synthesis is conducted in an atmosphere of inert gases (purity grade 5.0). The arc stability and its effect on particle synthesis are investigated. The experiments reveal excellent long-term arc stability for at least 8 h continuous operation delivering aerosols with high reproducibility (±10 % of average particle size). The influences of the arc current and length, the flow rates of the applied gases and the injection of hydrogen in the plasma zone on the particle size distributions and the agglomerate structure are studied. The produced copper nanoparticles are characterized by scanning mobility particle sizing and scanning electron microscopy. The average particle size could be well controlled in a size range 4–50 nm by selecting appropriate operating parameters. |
doi_str_mv | 10.1007/s11051-012-0926-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439732038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439732038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-c5ed6dcbd20d3e9b551ec1aff1dc3f3442a7bf3bfb31f6222122daeb7b8bb4db3</originalsourceid><addsrcrecordid>eNqNkUlLBDEQhRtRcP0B3gJevLSmkl6PMrjBgBcFLxKyVLSlJ2lTPeL8e3scDyIInqoKvveKqpdlx8DPgPP6nAB4CTkHkfNWVDlsZXtQ1iJv2upxe-pl0-S8rordbJ_olXOoRCv2sqfLjwFTt8Aw6p7RuHQrFj1b4HoMOsRBp7GzPTJahfEFqSNmVkwHppNl-K6HmPTYxXBuY3AY6GtgQ4oWiQ6zHa97wqPvepA9XF3ez27y-d317exintsC2jG3JbrKWeMEdxJbU5aAFrT34Kz0siiEro2XxhsJvhJCgBBOo6lNY0zhjDzITje-0963JdKoFh1Z7HsdMC5JQSHbWgoum3-iXLTFhJ78Ql_jMoXpEAWiKauSg1xTsKFsikQJvRqmf-q0UsDVOhu1yUZN2ah1NgomjdhoaGLDM6Yfzn-KPgGsE5OM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285650134</pqid></control><display><type>article</type><title>Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Förster, Henning ; Wolfrum, Christian ; Peukert, Wolfgang</creator><creatorcontrib>Förster, Henning ; Wolfrum, Christian ; Peukert, Wolfgang</creatorcontrib><description>The generation of copper nanoparticles in an arc furnace by the evaporation/condensation method is systematically investigated. The evaporation/condensation process is advantageous because it allows direct synthesis using pure metals as starting materials avoiding reactions of expensive and potentially poisonous precursors. In the presented system, a transferred direct current arc provides the energy for evaporation of the metal target. In order to prevent an oxidation of the particles in the process, the synthesis is conducted in an atmosphere of inert gases (purity grade 5.0). The arc stability and its effect on particle synthesis are investigated. The experiments reveal excellent long-term arc stability for at least 8 h continuous operation delivering aerosols with high reproducibility (±10 % of average particle size). The influences of the arc current and length, the flow rates of the applied gases and the injection of hydrogen in the plasma zone on the particle size distributions and the agglomerate structure are studied. The produced copper nanoparticles are characterized by scanning mobility particle sizing and scanning electron microscopy. The average particle size could be well controlled in a size range 4–50 nm by selecting appropriate operating parameters.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-012-0926-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensation ; Condensing ; Copper ; Evaporation ; Flow rates ; Inorganic Chemistry ; Lasers ; Materials Science ; Nanomaterials ; Nanoparticles ; Nanostructure ; Nanotechnology ; Optical Devices ; Optics ; Particle size ; Photonics ; Physical Chemistry ; Research Paper ; Scanning electron microscopy ; Stability ; Synthesis</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2012-07, Vol.14 (7), p.1-16, Article 926</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-c5ed6dcbd20d3e9b551ec1aff1dc3f3442a7bf3bfb31f6222122daeb7b8bb4db3</citedby><cites>FETCH-LOGICAL-c419t-c5ed6dcbd20d3e9b551ec1aff1dc3f3442a7bf3bfb31f6222122daeb7b8bb4db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-012-0926-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-012-0926-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Förster, Henning</creatorcontrib><creatorcontrib>Wolfrum, Christian</creatorcontrib><creatorcontrib>Peukert, Wolfgang</creatorcontrib><title>Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>The generation of copper nanoparticles in an arc furnace by the evaporation/condensation method is systematically investigated. The evaporation/condensation process is advantageous because it allows direct synthesis using pure metals as starting materials avoiding reactions of expensive and potentially poisonous precursors. In the presented system, a transferred direct current arc provides the energy for evaporation of the metal target. In order to prevent an oxidation of the particles in the process, the synthesis is conducted in an atmosphere of inert gases (purity grade 5.0). The arc stability and its effect on particle synthesis are investigated. The experiments reveal excellent long-term arc stability for at least 8 h continuous operation delivering aerosols with high reproducibility (±10 % of average particle size). The influences of the arc current and length, the flow rates of the applied gases and the injection of hydrogen in the plasma zone on the particle size distributions and the agglomerate structure are studied. The produced copper nanoparticles are characterized by scanning mobility particle sizing and scanning electron microscopy. The average particle size could be well controlled in a size range 4–50 nm by selecting appropriate operating parameters.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensation</subject><subject>Condensing</subject><subject>Copper</subject><subject>Evaporation</subject><subject>Flow rates</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Particle size</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Research Paper</subject><subject>Scanning electron microscopy</subject><subject>Stability</subject><subject>Synthesis</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkUlLBDEQhRtRcP0B3gJevLSmkl6PMrjBgBcFLxKyVLSlJ2lTPeL8e3scDyIInqoKvveKqpdlx8DPgPP6nAB4CTkHkfNWVDlsZXtQ1iJv2upxe-pl0-S8rordbJ_olXOoRCv2sqfLjwFTt8Aw6p7RuHQrFj1b4HoMOsRBp7GzPTJahfEFqSNmVkwHppNl-K6HmPTYxXBuY3AY6GtgQ4oWiQ6zHa97wqPvepA9XF3ez27y-d317exintsC2jG3JbrKWeMEdxJbU5aAFrT34Kz0siiEro2XxhsJvhJCgBBOo6lNY0zhjDzITje-0963JdKoFh1Z7HsdMC5JQSHbWgoum3-iXLTFhJ78Ql_jMoXpEAWiKauSg1xTsKFsikQJvRqmf-q0UsDVOhu1yUZN2ah1NgomjdhoaGLDM6Yfzn-KPgGsE5OM</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Förster, Henning</creator><creator>Wolfrum, Christian</creator><creator>Peukert, Wolfgang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120701</creationdate><title>Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process</title><author>Förster, Henning ; Wolfrum, Christian ; Peukert, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-c5ed6dcbd20d3e9b551ec1aff1dc3f3442a7bf3bfb31f6222122daeb7b8bb4db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensation</topic><topic>Condensing</topic><topic>Copper</topic><topic>Evaporation</topic><topic>Flow rates</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Particle size</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Research Paper</topic><topic>Scanning electron microscopy</topic><topic>Stability</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Förster, Henning</creatorcontrib><creatorcontrib>Wolfrum, Christian</creatorcontrib><creatorcontrib>Peukert, Wolfgang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Förster, Henning</au><au>Wolfrum, Christian</au><au>Peukert, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>14</volume><issue>7</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>926</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>The generation of copper nanoparticles in an arc furnace by the evaporation/condensation method is systematically investigated. The evaporation/condensation process is advantageous because it allows direct synthesis using pure metals as starting materials avoiding reactions of expensive and potentially poisonous precursors. In the presented system, a transferred direct current arc provides the energy for evaporation of the metal target. In order to prevent an oxidation of the particles in the process, the synthesis is conducted in an atmosphere of inert gases (purity grade 5.0). The arc stability and its effect on particle synthesis are investigated. The experiments reveal excellent long-term arc stability for at least 8 h continuous operation delivering aerosols with high reproducibility (±10 % of average particle size). The influences of the arc current and length, the flow rates of the applied gases and the injection of hydrogen in the plasma zone on the particle size distributions and the agglomerate structure are studied. The produced copper nanoparticles are characterized by scanning mobility particle sizing and scanning electron microscopy. The average particle size could be well controlled in a size range 4–50 nm by selecting appropriate operating parameters.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-012-0926-1</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2012-07, Vol.14 (7), p.1-16, Article 926 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_miscellaneous_1439732038 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Condensation Condensing Copper Evaporation Flow rates Inorganic Chemistry Lasers Materials Science Nanomaterials Nanoparticles Nanostructure Nanotechnology Optical Devices Optics Particle size Photonics Physical Chemistry Research Paper Scanning electron microscopy Stability Synthesis |
title | Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20of%20metal%20nanoparticle%20synthesis%20by%20an%20arc%20evaporation/condensation%20process&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=F%C3%B6rster,%20Henning&rft.date=2012-07-01&rft.volume=14&rft.issue=7&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=926&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-012-0926-1&rft_dat=%3Cproquest_cross%3E1439732038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1285650134&rft_id=info:pmid/&rfr_iscdi=true |