Fuzzy Models for Link Prediction in Social Networks

Predicting missing links and links that may occur in the future in social networks is an attention grabbing topic amid the social network analysts. Owing to the relationship between human‐based system and social sciences in this field, granular computing can help us to model the systems more effecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2013-08, Vol.28 (8), p.768-786
Hauptverfasser: Bastani, Susan, Jafarabad, Ahmad Khalili, Zarandi, Mohammad Hossein Fazel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 786
container_issue 8
container_start_page 768
container_title International journal of intelligent systems
container_volume 28
creator Bastani, Susan
Jafarabad, Ahmad Khalili
Zarandi, Mohammad Hossein Fazel
description Predicting missing links and links that may occur in the future in social networks is an attention grabbing topic amid the social network analysts. Owing to the relationship between human‐based system and social sciences in this field, granular computing can help us to model the systems more effectively. The present study aims to propose two new similarity indices, based on granular computing approach and fuzzy logic. It also presents a new hybrid model for creating synergy between various link prediction models. Results show that fuzzy system analysis, in comparison with the crisp approach, can make more effective predictions through better expression of network characteristics. The indices are tested on collaboration networks. It is found that the accuracy of predictions is significantly higher than the crisp approach. It can modify the models for computing the strength of the links and/or predicting the evolutions of the social networks.
doi_str_mv 10.1002/int.21601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439731057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439731057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4331-eef8d74c194a9be25880173a5e31a0bd649e58f2731e0b04a25c7907cd3fe69e3</originalsourceid><addsrcrecordid>eNp1kE9rGzEQR0VpoW6aQ77BQim0h01mVtJqdSwm_6jjGOKQ3ISsnQXF65UrrUmdT59NnfhQyGku7z2GH2NHCMcIUJz4rj8usAT8wEYIusoR8f4jG0FVibxCxT-zLyk9ACAqIUeMn22enrbZVaipTVkTYjbx3TKbRaq9633oMt9lN8F522ZT6h9DXKav7FNj20SHr_eA3Z6dzscX-eT6_HL8a5I7wTnmRE1VK-FQC6sXVMiqguEBK4mjhUVdCk2yagrFkWABwhbSKQ3K1byhUhM_YD923XUMfzaUerPyyVHb2o7CJhkUXA8ySDWg3_5DH8ImdsN3BnmptBRSlwP1c0e5GFKK1Jh19CsbtwbBvMxnhvnMv_kG9vtr0SZn2ybazvm0FwpVQokFH7iTHffoW9q-HzSX0_lbOd8ZPvX0d2_YuDSl4kqau-m5-T2by2IGc3PDnwEio4ri</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367954596</pqid></control><display><type>article</type><title>Fuzzy Models for Link Prediction in Social Networks</title><source>Access via Wiley Online Library</source><creator>Bastani, Susan ; Jafarabad, Ahmad Khalili ; Zarandi, Mohammad Hossein Fazel</creator><creatorcontrib>Bastani, Susan ; Jafarabad, Ahmad Khalili ; Zarandi, Mohammad Hossein Fazel</creatorcontrib><description>Predicting missing links and links that may occur in the future in social networks is an attention grabbing topic amid the social network analysts. Owing to the relationship between human‐based system and social sciences in this field, granular computing can help us to model the systems more effectively. The present study aims to propose two new similarity indices, based on granular computing approach and fuzzy logic. It also presents a new hybrid model for creating synergy between various link prediction models. Results show that fuzzy system analysis, in comparison with the crisp approach, can make more effective predictions through better expression of network characteristics. The indices are tested on collaboration networks. It is found that the accuracy of predictions is significantly higher than the crisp approach. It can modify the models for computing the strength of the links and/or predicting the evolutions of the social networks.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.21601</identifier><identifier>CODEN: IJISED</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computation ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Crisps ; Evolution ; Exact sciences and technology ; Fuzzy logic ; Intelligent systems ; Links ; Mathematical models ; Networks ; Social networks ; Software ; Studies ; Theoretical computing</subject><ispartof>International journal of intelligent systems, 2013-08, Vol.28 (8), p.768-786</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4331-eef8d74c194a9be25880173a5e31a0bd649e58f2731e0b04a25c7907cd3fe69e3</citedby><cites>FETCH-LOGICAL-c4331-eef8d74c194a9be25880173a5e31a0bd649e58f2731e0b04a25c7907cd3fe69e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.21601$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.21601$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27606123$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bastani, Susan</creatorcontrib><creatorcontrib>Jafarabad, Ahmad Khalili</creatorcontrib><creatorcontrib>Zarandi, Mohammad Hossein Fazel</creatorcontrib><title>Fuzzy Models for Link Prediction in Social Networks</title><title>International journal of intelligent systems</title><addtitle>Int. J. Intell. Syst</addtitle><description>Predicting missing links and links that may occur in the future in social networks is an attention grabbing topic amid the social network analysts. Owing to the relationship between human‐based system and social sciences in this field, granular computing can help us to model the systems more effectively. The present study aims to propose two new similarity indices, based on granular computing approach and fuzzy logic. It also presents a new hybrid model for creating synergy between various link prediction models. Results show that fuzzy system analysis, in comparison with the crisp approach, can make more effective predictions through better expression of network characteristics. The indices are tested on collaboration networks. It is found that the accuracy of predictions is significantly higher than the crisp approach. It can modify the models for computing the strength of the links and/or predicting the evolutions of the social networks.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Crisps</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fuzzy logic</subject><subject>Intelligent systems</subject><subject>Links</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Social networks</subject><subject>Software</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9rGzEQR0VpoW6aQ77BQim0h01mVtJqdSwm_6jjGOKQ3ISsnQXF65UrrUmdT59NnfhQyGku7z2GH2NHCMcIUJz4rj8usAT8wEYIusoR8f4jG0FVibxCxT-zLyk9ACAqIUeMn22enrbZVaipTVkTYjbx3TKbRaq9633oMt9lN8F522ZT6h9DXKav7FNj20SHr_eA3Z6dzscX-eT6_HL8a5I7wTnmRE1VK-FQC6sXVMiqguEBK4mjhUVdCk2yagrFkWABwhbSKQ3K1byhUhM_YD923XUMfzaUerPyyVHb2o7CJhkUXA8ySDWg3_5DH8ImdsN3BnmptBRSlwP1c0e5GFKK1Jh19CsbtwbBvMxnhvnMv_kG9vtr0SZn2ybazvm0FwpVQokFH7iTHffoW9q-HzSX0_lbOd8ZPvX0d2_YuDSl4kqau-m5-T2by2IGc3PDnwEio4ri</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Bastani, Susan</creator><creator>Jafarabad, Ahmad Khalili</creator><creator>Zarandi, Mohammad Hossein Fazel</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201308</creationdate><title>Fuzzy Models for Link Prediction in Social Networks</title><author>Bastani, Susan ; Jafarabad, Ahmad Khalili ; Zarandi, Mohammad Hossein Fazel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4331-eef8d74c194a9be25880173a5e31a0bd649e58f2731e0b04a25c7907cd3fe69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Crisps</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fuzzy logic</topic><topic>Intelligent systems</topic><topic>Links</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Social networks</topic><topic>Software</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastani, Susan</creatorcontrib><creatorcontrib>Jafarabad, Ahmad Khalili</creatorcontrib><creatorcontrib>Zarandi, Mohammad Hossein Fazel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastani, Susan</au><au>Jafarabad, Ahmad Khalili</au><au>Zarandi, Mohammad Hossein Fazel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Models for Link Prediction in Social Networks</atitle><jtitle>International journal of intelligent systems</jtitle><addtitle>Int. J. Intell. Syst</addtitle><date>2013-08</date><risdate>2013</risdate><volume>28</volume><issue>8</issue><spage>768</spage><epage>786</epage><pages>768-786</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><coden>IJISED</coden><abstract>Predicting missing links and links that may occur in the future in social networks is an attention grabbing topic amid the social network analysts. Owing to the relationship between human‐based system and social sciences in this field, granular computing can help us to model the systems more effectively. The present study aims to propose two new similarity indices, based on granular computing approach and fuzzy logic. It also presents a new hybrid model for creating synergy between various link prediction models. Results show that fuzzy system analysis, in comparison with the crisp approach, can make more effective predictions through better expression of network characteristics. The indices are tested on collaboration networks. It is found that the accuracy of predictions is significantly higher than the crisp approach. It can modify the models for computing the strength of the links and/or predicting the evolutions of the social networks.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/int.21601</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2013-08, Vol.28 (8), p.768-786
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_miscellaneous_1439731057
source Access via Wiley Online Library
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computation
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Crisps
Evolution
Exact sciences and technology
Fuzzy logic
Intelligent systems
Links
Mathematical models
Networks
Social networks
Software
Studies
Theoretical computing
title Fuzzy Models for Link Prediction in Social Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Models%20for%20Link%20Prediction%20in%20Social%20Networks&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Bastani,%20Susan&rft.date=2013-08&rft.volume=28&rft.issue=8&rft.spage=768&rft.epage=786&rft.pages=768-786&rft.issn=0884-8173&rft.eissn=1098-111X&rft.coden=IJISED&rft_id=info:doi/10.1002/int.21601&rft_dat=%3Cproquest_cross%3E1439731057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367954596&rft_id=info:pmid/&rfr_iscdi=true