Fuzzy Models for Link Prediction in Social Networks
Predicting missing links and links that may occur in the future in social networks is an attention grabbing topic amid the social network analysts. Owing to the relationship between human‐based system and social sciences in this field, granular computing can help us to model the systems more effecti...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems 2013-08, Vol.28 (8), p.768-786 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 8 |
container_start_page | 768 |
container_title | International journal of intelligent systems |
container_volume | 28 |
creator | Bastani, Susan Jafarabad, Ahmad Khalili Zarandi, Mohammad Hossein Fazel |
description | Predicting missing links and links that may occur in the future in social networks is an attention grabbing topic amid the social network analysts. Owing to the relationship between human‐based system and social sciences in this field, granular computing can help us to model the systems more effectively. The present study aims to propose two new similarity indices, based on granular computing approach and fuzzy logic. It also presents a new hybrid model for creating synergy between various link prediction models. Results show that fuzzy system analysis, in comparison with the crisp approach, can make more effective predictions through better expression of network characteristics. The indices are tested on collaboration networks. It is found that the accuracy of predictions is significantly higher than the crisp approach. It can modify the models for computing the strength of the links and/or predicting the evolutions of the social networks. |
doi_str_mv | 10.1002/int.21601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439731057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439731057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4331-eef8d74c194a9be25880173a5e31a0bd649e58f2731e0b04a25c7907cd3fe69e3</originalsourceid><addsrcrecordid>eNp1kE9rGzEQR0VpoW6aQ77BQim0h01mVtJqdSwm_6jjGOKQ3ISsnQXF65UrrUmdT59NnfhQyGku7z2GH2NHCMcIUJz4rj8usAT8wEYIusoR8f4jG0FVibxCxT-zLyk9ACAqIUeMn22enrbZVaipTVkTYjbx3TKbRaq9633oMt9lN8F522ZT6h9DXKav7FNj20SHr_eA3Z6dzscX-eT6_HL8a5I7wTnmRE1VK-FQC6sXVMiqguEBK4mjhUVdCk2yagrFkWABwhbSKQ3K1byhUhM_YD923XUMfzaUerPyyVHb2o7CJhkUXA8ySDWg3_5DH8ImdsN3BnmptBRSlwP1c0e5GFKK1Jh19CsbtwbBvMxnhvnMv_kG9vtr0SZn2ybazvm0FwpVQokFH7iTHffoW9q-HzSX0_lbOd8ZPvX0d2_YuDSl4kqau-m5-T2by2IGc3PDnwEio4ri</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367954596</pqid></control><display><type>article</type><title>Fuzzy Models for Link Prediction in Social Networks</title><source>Access via Wiley Online Library</source><creator>Bastani, Susan ; Jafarabad, Ahmad Khalili ; Zarandi, Mohammad Hossein Fazel</creator><creatorcontrib>Bastani, Susan ; Jafarabad, Ahmad Khalili ; Zarandi, Mohammad Hossein Fazel</creatorcontrib><description>Predicting missing links and links that may occur in the future in social networks is an attention grabbing topic amid the social network analysts. Owing to the relationship between human‐based system and social sciences in this field, granular computing can help us to model the systems more effectively. The present study aims to propose two new similarity indices, based on granular computing approach and fuzzy logic. It also presents a new hybrid model for creating synergy between various link prediction models. Results show that fuzzy system analysis, in comparison with the crisp approach, can make more effective predictions through better expression of network characteristics. The indices are tested on collaboration networks. It is found that the accuracy of predictions is significantly higher than the crisp approach. It can modify the models for computing the strength of the links and/or predicting the evolutions of the social networks.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.21601</identifier><identifier>CODEN: IJISED</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computation ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Crisps ; Evolution ; Exact sciences and technology ; Fuzzy logic ; Intelligent systems ; Links ; Mathematical models ; Networks ; Social networks ; Software ; Studies ; Theoretical computing</subject><ispartof>International journal of intelligent systems, 2013-08, Vol.28 (8), p.768-786</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4331-eef8d74c194a9be25880173a5e31a0bd649e58f2731e0b04a25c7907cd3fe69e3</citedby><cites>FETCH-LOGICAL-c4331-eef8d74c194a9be25880173a5e31a0bd649e58f2731e0b04a25c7907cd3fe69e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.21601$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.21601$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27606123$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bastani, Susan</creatorcontrib><creatorcontrib>Jafarabad, Ahmad Khalili</creatorcontrib><creatorcontrib>Zarandi, Mohammad Hossein Fazel</creatorcontrib><title>Fuzzy Models for Link Prediction in Social Networks</title><title>International journal of intelligent systems</title><addtitle>Int. J. Intell. Syst</addtitle><description>Predicting missing links and links that may occur in the future in social networks is an attention grabbing topic amid the social network analysts. Owing to the relationship between human‐based system and social sciences in this field, granular computing can help us to model the systems more effectively. The present study aims to propose two new similarity indices, based on granular computing approach and fuzzy logic. It also presents a new hybrid model for creating synergy between various link prediction models. Results show that fuzzy system analysis, in comparison with the crisp approach, can make more effective predictions through better expression of network characteristics. The indices are tested on collaboration networks. It is found that the accuracy of predictions is significantly higher than the crisp approach. It can modify the models for computing the strength of the links and/or predicting the evolutions of the social networks.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Crisps</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fuzzy logic</subject><subject>Intelligent systems</subject><subject>Links</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Social networks</subject><subject>Software</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9rGzEQR0VpoW6aQ77BQim0h01mVtJqdSwm_6jjGOKQ3ISsnQXF65UrrUmdT59NnfhQyGku7z2GH2NHCMcIUJz4rj8usAT8wEYIusoR8f4jG0FVibxCxT-zLyk9ACAqIUeMn22enrbZVaipTVkTYjbx3TKbRaq9633oMt9lN8F522ZT6h9DXKav7FNj20SHr_eA3Z6dzscX-eT6_HL8a5I7wTnmRE1VK-FQC6sXVMiqguEBK4mjhUVdCk2yagrFkWABwhbSKQ3K1byhUhM_YD923XUMfzaUerPyyVHb2o7CJhkUXA8ySDWg3_5DH8ImdsN3BnmptBRSlwP1c0e5GFKK1Jh19CsbtwbBvMxnhvnMv_kG9vtr0SZn2ybazvm0FwpVQokFH7iTHffoW9q-HzSX0_lbOd8ZPvX0d2_YuDSl4kqau-m5-T2by2IGc3PDnwEio4ri</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Bastani, Susan</creator><creator>Jafarabad, Ahmad Khalili</creator><creator>Zarandi, Mohammad Hossein Fazel</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201308</creationdate><title>Fuzzy Models for Link Prediction in Social Networks</title><author>Bastani, Susan ; Jafarabad, Ahmad Khalili ; Zarandi, Mohammad Hossein Fazel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4331-eef8d74c194a9be25880173a5e31a0bd649e58f2731e0b04a25c7907cd3fe69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Crisps</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fuzzy logic</topic><topic>Intelligent systems</topic><topic>Links</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Social networks</topic><topic>Software</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastani, Susan</creatorcontrib><creatorcontrib>Jafarabad, Ahmad Khalili</creatorcontrib><creatorcontrib>Zarandi, Mohammad Hossein Fazel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastani, Susan</au><au>Jafarabad, Ahmad Khalili</au><au>Zarandi, Mohammad Hossein Fazel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Models for Link Prediction in Social Networks</atitle><jtitle>International journal of intelligent systems</jtitle><addtitle>Int. J. Intell. Syst</addtitle><date>2013-08</date><risdate>2013</risdate><volume>28</volume><issue>8</issue><spage>768</spage><epage>786</epage><pages>768-786</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><coden>IJISED</coden><abstract>Predicting missing links and links that may occur in the future in social networks is an attention grabbing topic amid the social network analysts. Owing to the relationship between human‐based system and social sciences in this field, granular computing can help us to model the systems more effectively. The present study aims to propose two new similarity indices, based on granular computing approach and fuzzy logic. It also presents a new hybrid model for creating synergy between various link prediction models. Results show that fuzzy system analysis, in comparison with the crisp approach, can make more effective predictions through better expression of network characteristics. The indices are tested on collaboration networks. It is found that the accuracy of predictions is significantly higher than the crisp approach. It can modify the models for computing the strength of the links and/or predicting the evolutions of the social networks.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/int.21601</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-8173 |
ispartof | International journal of intelligent systems, 2013-08, Vol.28 (8), p.768-786 |
issn | 0884-8173 1098-111X |
language | eng |
recordid | cdi_proquest_miscellaneous_1439731057 |
source | Access via Wiley Online Library |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computation Computer science control theory systems Computer systems and distributed systems. User interface Crisps Evolution Exact sciences and technology Fuzzy logic Intelligent systems Links Mathematical models Networks Social networks Software Studies Theoretical computing |
title | Fuzzy Models for Link Prediction in Social Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Models%20for%20Link%20Prediction%20in%20Social%20Networks&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Bastani,%20Susan&rft.date=2013-08&rft.volume=28&rft.issue=8&rft.spage=768&rft.epage=786&rft.pages=768-786&rft.issn=0884-8173&rft.eissn=1098-111X&rft.coden=IJISED&rft_id=info:doi/10.1002/int.21601&rft_dat=%3Cproquest_cross%3E1439731057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367954596&rft_id=info:pmid/&rfr_iscdi=true |