Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions

The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualization of 3D volumetric data sets. We use a local approximation method for quadratic C1 splines on uniform tetrahedral partitions to achieve a globally smooth function. The spline i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information visualization 2012-01, Vol.11 (1), p.60-70
Hauptverfasser: Marinc, Alexander, Kalbe, Thomas, Rhein, Markus, Goesele, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 60
container_title Information visualization
container_volume 11
creator Marinc, Alexander
Kalbe, Thomas
Rhein, Markus
Goesele, Michael
description The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualization of 3D volumetric data sets. We use a local approximation method for quadratic C1 splines on uniform tetrahedral partitions to achieve a globally smooth function. The spline is based on a truncated octahedral partition of the volumetric domain, where each truncated octahedron is further split into a fixed number of disjunct tetrahedra. The Bernstein–Bézier coefficients of the piecewise polynomials are directly determined by appropriate combinations of the data values in a local neighbourhood. As previously shown, the splines provide an approximation order two for smooth functions as well as their derivatives. We present the first visualizations using these splines and show that they are well suited for graphics processing unit (GPU)-based, interactive, high-quality visualization of isosurfaces from discrete data.
doi_str_mv 10.1177/1473871611430768
format Article
fullrecord <record><control><sourceid>proquest_sage_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439730225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1473871611430768</sage_id><sourcerecordid>2832469871</sourcerecordid><originalsourceid>FETCH-LOGICAL-p998-b3d7d4ab94b785ef8b4f21bf84f6111b3f6ffd1be9495682751488dbfd2336ad3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7ePQa8eKl2krRJjrL4sbDgpfeSNImbpTbdJtW_b5YVkT3NMPPwMvMgdAvlAwDnj8A4FRxqAEZLXosztDiMCsEJO__rob5EVzHuypJwVsoFatZDspPqkv-y2McQ58mpzkb87dMW72dlJpV8h1eA49j7IW_CgNM0D51K1uDQJbW1GerxqKbkkw9DvEYXTvXR3vzWJWpenpvVW7F5f12vnjbFKKUoNDXcMKUl01xU1gnNHAHtBHP5C9DU1c4Z0FYyWdWC8AqYEEY7QyitlaFLdH-MHaewn21M7aePne17NdgwxzabkJyWhFQZvTtBd2GehnxcC4SAlDSnZ6o4UlF92H9E2R4Ut6eK6Q9lfG43</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221993751</pqid></control><display><type>article</type><title>Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions</title><source>SAGE Complete A-Z List</source><creator>Marinc, Alexander ; Kalbe, Thomas ; Rhein, Markus ; Goesele, Michael</creator><creatorcontrib>Marinc, Alexander ; Kalbe, Thomas ; Rhein, Markus ; Goesele, Michael</creatorcontrib><description>The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualization of 3D volumetric data sets. We use a local approximation method for quadratic C1 splines on uniform tetrahedral partitions to achieve a globally smooth function. The spline is based on a truncated octahedral partition of the volumetric domain, where each truncated octahedron is further split into a fixed number of disjunct tetrahedra. The Bernstein–Bézier coefficients of the piecewise polynomials are directly determined by appropriate combinations of the data values in a local neighbourhood. As previously shown, the splines provide an approximation order two for smooth functions as well as their derivatives. We present the first visualizations using these splines and show that they are well suited for graphics processing unit (GPU)-based, interactive, high-quality visualization of isosurfaces from discrete data.</description><identifier>ISSN: 1473-8716</identifier><identifier>EISSN: 1473-8724</identifier><identifier>DOI: 10.1177/1473871611430768</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Approximation ; Data analysis ; Datasets ; Derivatives ; Functions (mathematics) ; Interactive ; Mathematical analysis ; Partitions ; Polynomials ; Splines ; Statistical analysis ; Visualization</subject><ispartof>Information visualization, 2012-01, Vol.11 (1), p.60-70</ispartof><rights>SAGE Publications 2011</rights><rights>SAGE Publications © Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1473871611430768$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1473871611430768$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21810,27915,27916,43612,43613</link.rule.ids></links><search><creatorcontrib>Marinc, Alexander</creatorcontrib><creatorcontrib>Kalbe, Thomas</creatorcontrib><creatorcontrib>Rhein, Markus</creatorcontrib><creatorcontrib>Goesele, Michael</creatorcontrib><title>Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions</title><title>Information visualization</title><description>The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualization of 3D volumetric data sets. We use a local approximation method for quadratic C1 splines on uniform tetrahedral partitions to achieve a globally smooth function. The spline is based on a truncated octahedral partition of the volumetric domain, where each truncated octahedron is further split into a fixed number of disjunct tetrahedra. The Bernstein–Bézier coefficients of the piecewise polynomials are directly determined by appropriate combinations of the data values in a local neighbourhood. As previously shown, the splines provide an approximation order two for smooth functions as well as their derivatives. We present the first visualizations using these splines and show that they are well suited for graphics processing unit (GPU)-based, interactive, high-quality visualization of isosurfaces from discrete data.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Derivatives</subject><subject>Functions (mathematics)</subject><subject>Interactive</subject><subject>Mathematical analysis</subject><subject>Partitions</subject><subject>Polynomials</subject><subject>Splines</subject><subject>Statistical analysis</subject><subject>Visualization</subject><issn>1473-8716</issn><issn>1473-8724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMouK7ePQa8eKl2krRJjrL4sbDgpfeSNImbpTbdJtW_b5YVkT3NMPPwMvMgdAvlAwDnj8A4FRxqAEZLXosztDiMCsEJO__rob5EVzHuypJwVsoFatZDspPqkv-y2McQ58mpzkb87dMW72dlJpV8h1eA49j7IW_CgNM0D51K1uDQJbW1GerxqKbkkw9DvEYXTvXR3vzWJWpenpvVW7F5f12vnjbFKKUoNDXcMKUl01xU1gnNHAHtBHP5C9DU1c4Z0FYyWdWC8AqYEEY7QyitlaFLdH-MHaewn21M7aePne17NdgwxzabkJyWhFQZvTtBd2GehnxcC4SAlDSnZ6o4UlF92H9E2R4Ut6eK6Q9lfG43</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Marinc, Alexander</creator><creator>Kalbe, Thomas</creator><creator>Rhein, Markus</creator><creator>Goesele, Michael</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201201</creationdate><title>Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions</title><author>Marinc, Alexander ; Kalbe, Thomas ; Rhein, Markus ; Goesele, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p998-b3d7d4ab94b785ef8b4f21bf84f6111b3f6ffd1be9495682751488dbfd2336ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Derivatives</topic><topic>Functions (mathematics)</topic><topic>Interactive</topic><topic>Mathematical analysis</topic><topic>Partitions</topic><topic>Polynomials</topic><topic>Splines</topic><topic>Statistical analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marinc, Alexander</creatorcontrib><creatorcontrib>Kalbe, Thomas</creatorcontrib><creatorcontrib>Rhein, Markus</creatorcontrib><creatorcontrib>Goesele, Michael</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinc, Alexander</au><au>Kalbe, Thomas</au><au>Rhein, Markus</au><au>Goesele, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions</atitle><jtitle>Information visualization</jtitle><date>2012-01</date><risdate>2012</risdate><volume>11</volume><issue>1</issue><spage>60</spage><epage>70</epage><pages>60-70</pages><issn>1473-8716</issn><eissn>1473-8724</eissn><abstract>The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualization of 3D volumetric data sets. We use a local approximation method for quadratic C1 splines on uniform tetrahedral partitions to achieve a globally smooth function. The spline is based on a truncated octahedral partition of the volumetric domain, where each truncated octahedron is further split into a fixed number of disjunct tetrahedra. The Bernstein–Bézier coefficients of the piecewise polynomials are directly determined by appropriate combinations of the data values in a local neighbourhood. As previously shown, the splines provide an approximation order two for smooth functions as well as their derivatives. We present the first visualizations using these splines and show that they are well suited for graphics processing unit (GPU)-based, interactive, high-quality visualization of isosurfaces from discrete data.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1473871611430768</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-8716
ispartof Information visualization, 2012-01, Vol.11 (1), p.60-70
issn 1473-8716
1473-8724
language eng
recordid cdi_proquest_miscellaneous_1439730225
source SAGE Complete A-Z List
subjects Algorithms
Approximation
Data analysis
Datasets
Derivatives
Functions (mathematics)
Interactive
Mathematical analysis
Partitions
Polynomials
Splines
Statistical analysis
Visualization
title Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sage_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20isosurfaces%20with%20quadratic%20C1%20splines%20on%20truncated%20octahedral%20partitions&rft.jtitle=Information%20visualization&rft.au=Marinc,%20Alexander&rft.date=2012-01&rft.volume=11&rft.issue=1&rft.spage=60&rft.epage=70&rft.pages=60-70&rft.issn=1473-8716&rft.eissn=1473-8724&rft_id=info:doi/10.1177/1473871611430768&rft_dat=%3Cproquest_sage_%3E2832469871%3C/proquest_sage_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221993751&rft_id=info:pmid/&rft_sage_id=10.1177_1473871611430768&rfr_iscdi=true