Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions
The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualization of 3D volumetric data sets. We use a local approximation method for quadratic C1 splines on uniform tetrahedral partitions to achieve a globally smooth function. The spline i...
Gespeichert in:
Veröffentlicht in: | Information visualization 2012-01, Vol.11 (1), p.60-70 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 1 |
container_start_page | 60 |
container_title | Information visualization |
container_volume | 11 |
creator | Marinc, Alexander Kalbe, Thomas Rhein, Markus Goesele, Michael |
description | The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualization of 3D volumetric data sets. We use a local approximation method for quadratic C1 splines on uniform tetrahedral partitions to achieve a globally smooth function. The spline is based on a truncated octahedral partition of the volumetric domain, where each truncated octahedron is further split into a fixed number of disjunct tetrahedra. The Bernstein–Bézier coefficients of the piecewise polynomials are directly determined by appropriate combinations of the data values in a local neighbourhood. As previously shown, the splines provide an approximation order two for smooth functions as well as their derivatives. We present the first visualizations using these splines and show that they are well suited for graphics processing unit (GPU)-based, interactive, high-quality visualization of isosurfaces from discrete data. |
doi_str_mv | 10.1177/1473871611430768 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sage_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439730225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1473871611430768</sage_id><sourcerecordid>2832469871</sourcerecordid><originalsourceid>FETCH-LOGICAL-p998-b3d7d4ab94b785ef8b4f21bf84f6111b3f6ffd1be9495682751488dbfd2336ad3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7ePQa8eKl2krRJjrL4sbDgpfeSNImbpTbdJtW_b5YVkT3NMPPwMvMgdAvlAwDnj8A4FRxqAEZLXosztDiMCsEJO__rob5EVzHuypJwVsoFatZDspPqkv-y2McQ58mpzkb87dMW72dlJpV8h1eA49j7IW_CgNM0D51K1uDQJbW1GerxqKbkkw9DvEYXTvXR3vzWJWpenpvVW7F5f12vnjbFKKUoNDXcMKUl01xU1gnNHAHtBHP5C9DU1c4Z0FYyWdWC8AqYEEY7QyitlaFLdH-MHaewn21M7aePne17NdgwxzabkJyWhFQZvTtBd2GehnxcC4SAlDSnZ6o4UlF92H9E2R4Ut6eK6Q9lfG43</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221993751</pqid></control><display><type>article</type><title>Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions</title><source>SAGE Complete A-Z List</source><creator>Marinc, Alexander ; Kalbe, Thomas ; Rhein, Markus ; Goesele, Michael</creator><creatorcontrib>Marinc, Alexander ; Kalbe, Thomas ; Rhein, Markus ; Goesele, Michael</creatorcontrib><description>The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualization of 3D volumetric data sets. We use a local approximation method for quadratic C1 splines on uniform tetrahedral partitions to achieve a globally smooth function. The spline is based on a truncated octahedral partition of the volumetric domain, where each truncated octahedron is further split into a fixed number of disjunct tetrahedra. The Bernstein–Bézier coefficients of the piecewise polynomials are directly determined by appropriate combinations of the data values in a local neighbourhood. As previously shown, the splines provide an approximation order two for smooth functions as well as their derivatives. We present the first visualizations using these splines and show that they are well suited for graphics processing unit (GPU)-based, interactive, high-quality visualization of isosurfaces from discrete data.</description><identifier>ISSN: 1473-8716</identifier><identifier>EISSN: 1473-8724</identifier><identifier>DOI: 10.1177/1473871611430768</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Approximation ; Data analysis ; Datasets ; Derivatives ; Functions (mathematics) ; Interactive ; Mathematical analysis ; Partitions ; Polynomials ; Splines ; Statistical analysis ; Visualization</subject><ispartof>Information visualization, 2012-01, Vol.11 (1), p.60-70</ispartof><rights>SAGE Publications 2011</rights><rights>SAGE Publications © Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1473871611430768$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1473871611430768$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21810,27915,27916,43612,43613</link.rule.ids></links><search><creatorcontrib>Marinc, Alexander</creatorcontrib><creatorcontrib>Kalbe, Thomas</creatorcontrib><creatorcontrib>Rhein, Markus</creatorcontrib><creatorcontrib>Goesele, Michael</creatorcontrib><title>Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions</title><title>Information visualization</title><description>The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualization of 3D volumetric data sets. We use a local approximation method for quadratic C1 splines on uniform tetrahedral partitions to achieve a globally smooth function. The spline is based on a truncated octahedral partition of the volumetric domain, where each truncated octahedron is further split into a fixed number of disjunct tetrahedra. The Bernstein–Bézier coefficients of the piecewise polynomials are directly determined by appropriate combinations of the data values in a local neighbourhood. As previously shown, the splines provide an approximation order two for smooth functions as well as their derivatives. We present the first visualizations using these splines and show that they are well suited for graphics processing unit (GPU)-based, interactive, high-quality visualization of isosurfaces from discrete data.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Derivatives</subject><subject>Functions (mathematics)</subject><subject>Interactive</subject><subject>Mathematical analysis</subject><subject>Partitions</subject><subject>Polynomials</subject><subject>Splines</subject><subject>Statistical analysis</subject><subject>Visualization</subject><issn>1473-8716</issn><issn>1473-8724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMouK7ePQa8eKl2krRJjrL4sbDgpfeSNImbpTbdJtW_b5YVkT3NMPPwMvMgdAvlAwDnj8A4FRxqAEZLXosztDiMCsEJO__rob5EVzHuypJwVsoFatZDspPqkv-y2McQ58mpzkb87dMW72dlJpV8h1eA49j7IW_CgNM0D51K1uDQJbW1GerxqKbkkw9DvEYXTvXR3vzWJWpenpvVW7F5f12vnjbFKKUoNDXcMKUl01xU1gnNHAHtBHP5C9DU1c4Z0FYyWdWC8AqYEEY7QyitlaFLdH-MHaewn21M7aePne17NdgwxzabkJyWhFQZvTtBd2GehnxcC4SAlDSnZ6o4UlF92H9E2R4Ut6eK6Q9lfG43</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Marinc, Alexander</creator><creator>Kalbe, Thomas</creator><creator>Rhein, Markus</creator><creator>Goesele, Michael</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201201</creationdate><title>Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions</title><author>Marinc, Alexander ; Kalbe, Thomas ; Rhein, Markus ; Goesele, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p998-b3d7d4ab94b785ef8b4f21bf84f6111b3f6ffd1be9495682751488dbfd2336ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Derivatives</topic><topic>Functions (mathematics)</topic><topic>Interactive</topic><topic>Mathematical analysis</topic><topic>Partitions</topic><topic>Polynomials</topic><topic>Splines</topic><topic>Statistical analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marinc, Alexander</creatorcontrib><creatorcontrib>Kalbe, Thomas</creatorcontrib><creatorcontrib>Rhein, Markus</creatorcontrib><creatorcontrib>Goesele, Michael</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinc, Alexander</au><au>Kalbe, Thomas</au><au>Rhein, Markus</au><au>Goesele, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions</atitle><jtitle>Information visualization</jtitle><date>2012-01</date><risdate>2012</risdate><volume>11</volume><issue>1</issue><spage>60</spage><epage>70</epage><pages>60-70</pages><issn>1473-8716</issn><eissn>1473-8724</eissn><abstract>The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualization of 3D volumetric data sets. We use a local approximation method for quadratic C1 splines on uniform tetrahedral partitions to achieve a globally smooth function. The spline is based on a truncated octahedral partition of the volumetric domain, where each truncated octahedron is further split into a fixed number of disjunct tetrahedra. The Bernstein–Bézier coefficients of the piecewise polynomials are directly determined by appropriate combinations of the data values in a local neighbourhood. As previously shown, the splines provide an approximation order two for smooth functions as well as their derivatives. We present the first visualizations using these splines and show that they are well suited for graphics processing unit (GPU)-based, interactive, high-quality visualization of isosurfaces from discrete data.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1473871611430768</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-8716 |
ispartof | Information visualization, 2012-01, Vol.11 (1), p.60-70 |
issn | 1473-8716 1473-8724 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439730225 |
source | SAGE Complete A-Z List |
subjects | Algorithms Approximation Data analysis Datasets Derivatives Functions (mathematics) Interactive Mathematical analysis Partitions Polynomials Splines Statistical analysis Visualization |
title | Interactive isosurfaces with quadratic C1 splines on truncated octahedral partitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sage_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20isosurfaces%20with%20quadratic%20C1%20splines%20on%20truncated%20octahedral%20partitions&rft.jtitle=Information%20visualization&rft.au=Marinc,%20Alexander&rft.date=2012-01&rft.volume=11&rft.issue=1&rft.spage=60&rft.epage=70&rft.pages=60-70&rft.issn=1473-8716&rft.eissn=1473-8724&rft_id=info:doi/10.1177/1473871611430768&rft_dat=%3Cproquest_sage_%3E2832469871%3C/proquest_sage_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221993751&rft_id=info:pmid/&rft_sage_id=10.1177_1473871611430768&rfr_iscdi=true |