Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility
Injectable hydrogels represent biomaterials attractive for many biomedical applications. Here, a hybrid material composed of dextran‐crosslinked gelatin embedded with ≈100–1 000 µm long, electrospun bovine serum albumin fibers is described. Incorporation of fibers at weight fractions of 1–6% increas...
Gespeichert in:
Veröffentlicht in: | Macromolecular materials and engineering 2013-03, Vol.298 (3), p.283-291 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 3 |
container_start_page | 283 |
container_title | Macromolecular materials and engineering |
container_volume | 298 |
creator | Regev, Omri Reddy, Chaganti Srinivasa Nseir, Nora Zussman, Eyal |
description | Injectable hydrogels represent biomaterials attractive for many biomedical applications. Here, a hybrid material composed of dextran‐crosslinked gelatin embedded with ≈100–1 000 µm long, electrospun bovine serum albumin fibers is described. Incorporation of fibers at weight fractions of 1–6% increases the hydrogel elastic modulus by up to ≈40% and decreases the gelation time by ≈20%. The addition of short fibers does not affect the injection of the pre‐gel solution throughout medical needles at moderate shear rates. Finally, viability of seeded fibroblasts confirms the biocompatibility of the composite scaffold. This hybrid represents a class of biomaterials that structurally mimics the ECMs of common tissues and that can be delivered by a minimal‐invasive approach.
A hybrid biomaterial composed of a gelatin hydrogel and short electrospun albumin fibers is described. Rheological measurements show that embedded fibers allow monitoring the hybrid's stiffness without limiting injection of the pre‐gel solution. Cell assays demonstrate the hybrid's biocompatibility. |
doi_str_mv | 10.1002/mame.201200012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439729066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920255811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4552-e7572c7d12f29f17416aa395833320c2fd8021885fbc94f1ea5cdb27cbb07b83</originalsourceid><addsrcrecordid>eNqFkM9v0zAYhiMEEmNw5WwJIXFJ8Y84jrmVausQK4it0o6W7Xym3pK4s1NB-Ovn0qlCXHaxLfl53-_TUxRvCZ4RjOnHXvcwo5hQjPPxrDghFZMlxbx6_vfdlKKS9GXxKqXbTIhGspPi7mJqY_gJHboCP7gQLbTITOh6E-KI5p3Z9X5A595ATJ_QCuxGD97qDi02Omo7QvR_9OjDgPTQonlKkFIPw4iCQ599sKHf5m_jOz9Or4sXTncJ3jzep8X6_Gy9uCgvvy-_LOaXpa04pyUILqgVLaGOSkdERWqtmeQNY4xiS13bYEqahjtjZeUIaG5bQ4U1BgvTsNPiw6F2G8P9DtKoep8sdJ0eIOyS2msRVOK6zui7_9DbsItDXk4RlifLmlZVpmYHysaQUgSnttH3Ok6KYLVXr_bq1VF9Drx_rNUpu3JRD9anY4oKwkVNeebkgfvlO5ieaFWr-ers3xnlIevTCL-PWR3vVC2Y4Orm21I1V-sf8utSqpo9AB-Go_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317496244</pqid></control><display><type>article</type><title>Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Regev, Omri ; Reddy, Chaganti Srinivasa ; Nseir, Nora ; Zussman, Eyal</creator><creatorcontrib>Regev, Omri ; Reddy, Chaganti Srinivasa ; Nseir, Nora ; Zussman, Eyal</creatorcontrib><description>Injectable hydrogels represent biomaterials attractive for many biomedical applications. Here, a hybrid material composed of dextran‐crosslinked gelatin embedded with ≈100–1 000 µm long, electrospun bovine serum albumin fibers is described. Incorporation of fibers at weight fractions of 1–6% increases the hydrogel elastic modulus by up to ≈40% and decreases the gelation time by ≈20%. The addition of short fibers does not affect the injection of the pre‐gel solution throughout medical needles at moderate shear rates. Finally, viability of seeded fibroblasts confirms the biocompatibility of the composite scaffold. This hybrid represents a class of biomaterials that structurally mimics the ECMs of common tissues and that can be delivered by a minimal‐invasive approach.
A hybrid biomaterial composed of a gelatin hydrogel and short electrospun albumin fibers is described. Rheological measurements show that embedded fibers allow monitoring the hybrid's stiffness without limiting injection of the pre‐gel solution. Cell assays demonstrate the hybrid's biocompatibility.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.201200012</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; Biocompatibility ; Biological and medical sciences ; Biomaterials ; Biomedical materials ; Composites ; Electrospinning ; electrospun fibers ; Exact sciences and technology ; Fibers ; Forms of application and semi-finished materials ; Gelatins ; Hydrogels ; injectability ; mechanical properties ; Medical sciences ; Polymer industry, paints, wood ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology of polymers ; Technology. Biomaterials. Equipments</subject><ispartof>Macromolecular materials and engineering, 2013-03, Vol.298 (3), p.283-291</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4552-e7572c7d12f29f17416aa395833320c2fd8021885fbc94f1ea5cdb27cbb07b83</citedby><cites>FETCH-LOGICAL-c4552-e7572c7d12f29f17416aa395833320c2fd8021885fbc94f1ea5cdb27cbb07b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.201200012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.201200012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27157625$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Regev, Omri</creatorcontrib><creatorcontrib>Reddy, Chaganti Srinivasa</creatorcontrib><creatorcontrib>Nseir, Nora</creatorcontrib><creatorcontrib>Zussman, Eyal</creatorcontrib><title>Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility</title><title>Macromolecular materials and engineering</title><addtitle>Macromol. Mater. Eng</addtitle><description>Injectable hydrogels represent biomaterials attractive for many biomedical applications. Here, a hybrid material composed of dextran‐crosslinked gelatin embedded with ≈100–1 000 µm long, electrospun bovine serum albumin fibers is described. Incorporation of fibers at weight fractions of 1–6% increases the hydrogel elastic modulus by up to ≈40% and decreases the gelation time by ≈20%. The addition of short fibers does not affect the injection of the pre‐gel solution throughout medical needles at moderate shear rates. Finally, viability of seeded fibroblasts confirms the biocompatibility of the composite scaffold. This hybrid represents a class of biomaterials that structurally mimics the ECMs of common tissues and that can be delivered by a minimal‐invasive approach.
A hybrid biomaterial composed of a gelatin hydrogel and short electrospun albumin fibers is described. Rheological measurements show that embedded fibers allow monitoring the hybrid's stiffness without limiting injection of the pre‐gel solution. Cell assays demonstrate the hybrid's biocompatibility.</description><subject>Applied sciences</subject><subject>Biocompatibility</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Composites</subject><subject>Electrospinning</subject><subject>electrospun fibers</subject><subject>Exact sciences and technology</subject><subject>Fibers</subject><subject>Forms of application and semi-finished materials</subject><subject>Gelatins</subject><subject>Hydrogels</subject><subject>injectability</subject><subject>mechanical properties</subject><subject>Medical sciences</subject><subject>Polymer industry, paints, wood</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology of polymers</subject><subject>Technology. Biomaterials. Equipments</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM9v0zAYhiMEEmNw5WwJIXFJ8Y84jrmVausQK4it0o6W7Xym3pK4s1NB-Ovn0qlCXHaxLfl53-_TUxRvCZ4RjOnHXvcwo5hQjPPxrDghFZMlxbx6_vfdlKKS9GXxKqXbTIhGspPi7mJqY_gJHboCP7gQLbTITOh6E-KI5p3Z9X5A595ATJ_QCuxGD97qDi02Omo7QvR_9OjDgPTQonlKkFIPw4iCQ599sKHf5m_jOz9Or4sXTncJ3jzep8X6_Gy9uCgvvy-_LOaXpa04pyUILqgVLaGOSkdERWqtmeQNY4xiS13bYEqahjtjZeUIaG5bQ4U1BgvTsNPiw6F2G8P9DtKoep8sdJ0eIOyS2msRVOK6zui7_9DbsItDXk4RlifLmlZVpmYHysaQUgSnttH3Ok6KYLVXr_bq1VF9Drx_rNUpu3JRD9anY4oKwkVNeebkgfvlO5ieaFWr-ers3xnlIevTCL-PWR3vVC2Y4Orm21I1V-sf8utSqpo9AB-Go_o</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Regev, Omri</creator><creator>Reddy, Chaganti Srinivasa</creator><creator>Nseir, Nora</creator><creator>Zussman, Eyal</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201303</creationdate><title>Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility</title><author>Regev, Omri ; Reddy, Chaganti Srinivasa ; Nseir, Nora ; Zussman, Eyal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4552-e7572c7d12f29f17416aa395833320c2fd8021885fbc94f1ea5cdb27cbb07b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biocompatibility</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Composites</topic><topic>Electrospinning</topic><topic>electrospun fibers</topic><topic>Exact sciences and technology</topic><topic>Fibers</topic><topic>Forms of application and semi-finished materials</topic><topic>Gelatins</topic><topic>Hydrogels</topic><topic>injectability</topic><topic>mechanical properties</topic><topic>Medical sciences</topic><topic>Polymer industry, paints, wood</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology of polymers</topic><topic>Technology. Biomaterials. Equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Regev, Omri</creatorcontrib><creatorcontrib>Reddy, Chaganti Srinivasa</creatorcontrib><creatorcontrib>Nseir, Nora</creatorcontrib><creatorcontrib>Zussman, Eyal</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Regev, Omri</au><au>Reddy, Chaganti Srinivasa</au><au>Nseir, Nora</au><au>Zussman, Eyal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility</atitle><jtitle>Macromolecular materials and engineering</jtitle><addtitle>Macromol. Mater. Eng</addtitle><date>2013-03</date><risdate>2013</risdate><volume>298</volume><issue>3</issue><spage>283</spage><epage>291</epage><pages>283-291</pages><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Injectable hydrogels represent biomaterials attractive for many biomedical applications. Here, a hybrid material composed of dextran‐crosslinked gelatin embedded with ≈100–1 000 µm long, electrospun bovine serum albumin fibers is described. Incorporation of fibers at weight fractions of 1–6% increases the hydrogel elastic modulus by up to ≈40% and decreases the gelation time by ≈20%. The addition of short fibers does not affect the injection of the pre‐gel solution throughout medical needles at moderate shear rates. Finally, viability of seeded fibroblasts confirms the biocompatibility of the composite scaffold. This hybrid represents a class of biomaterials that structurally mimics the ECMs of common tissues and that can be delivered by a minimal‐invasive approach.
A hybrid biomaterial composed of a gelatin hydrogel and short electrospun albumin fibers is described. Rheological measurements show that embedded fibers allow monitoring the hybrid's stiffness without limiting injection of the pre‐gel solution. Cell assays demonstrate the hybrid's biocompatibility.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mame.201200012</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-7492 |
ispartof | Macromolecular materials and engineering, 2013-03, Vol.298 (3), p.283-291 |
issn | 1438-7492 1439-2054 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439729066 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Biocompatibility Biological and medical sciences Biomaterials Biomedical materials Composites Electrospinning electrospun fibers Exact sciences and technology Fibers Forms of application and semi-finished materials Gelatins Hydrogels injectability mechanical properties Medical sciences Polymer industry, paints, wood Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Technology of polymers Technology. Biomaterials. Equipments |
title | Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogel%20Reinforced%20by%20Short%20Albumin%20Fibers:%20Mechanical%20Characterization%20and%20Assessment%20of%20Biocompatibility&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Regev,%20Omri&rft.date=2013-03&rft.volume=298&rft.issue=3&rft.spage=283&rft.epage=291&rft.pages=283-291&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.201200012&rft_dat=%3Cproquest_cross%3E2920255811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317496244&rft_id=info:pmid/&rfr_iscdi=true |