Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility

Injectable hydrogels represent biomaterials attractive for many biomedical applications. Here, a hybrid material composed of dextran‐crosslinked gelatin embedded with ≈100–1 000 µm long, electrospun bovine serum albumin fibers is described. Incorporation of fibers at weight fractions of 1–6% increas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2013-03, Vol.298 (3), p.283-291
Hauptverfasser: Regev, Omri, Reddy, Chaganti Srinivasa, Nseir, Nora, Zussman, Eyal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 3
container_start_page 283
container_title Macromolecular materials and engineering
container_volume 298
creator Regev, Omri
Reddy, Chaganti Srinivasa
Nseir, Nora
Zussman, Eyal
description Injectable hydrogels represent biomaterials attractive for many biomedical applications. Here, a hybrid material composed of dextran‐crosslinked gelatin embedded with ≈100–1 000 µm long, electrospun bovine serum albumin fibers is described. Incorporation of fibers at weight fractions of 1–6% increases the hydrogel elastic modulus by up to ≈40% and decreases the gelation time by ≈20%. The addition of short fibers does not affect the injection of the pre‐gel solution throughout medical needles at moderate shear rates. Finally, viability of seeded fibroblasts confirms the biocompatibility of the composite scaffold. This hybrid represents a class of biomaterials that structurally mimics the ECMs of common tissues and that can be delivered by a minimal‐invasive approach. A hybrid biomaterial composed of a gelatin hydrogel and short electrospun albumin fibers is described. Rheological measurements show that embedded fibers allow monitoring the hybrid's stiffness without limiting injection of the pre‐gel solution. Cell assays demonstrate the hybrid's biocompatibility.
doi_str_mv 10.1002/mame.201200012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439729066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920255811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4552-e7572c7d12f29f17416aa395833320c2fd8021885fbc94f1ea5cdb27cbb07b83</originalsourceid><addsrcrecordid>eNqFkM9v0zAYhiMEEmNw5WwJIXFJ8Y84jrmVausQK4it0o6W7Xym3pK4s1NB-Ovn0qlCXHaxLfl53-_TUxRvCZ4RjOnHXvcwo5hQjPPxrDghFZMlxbx6_vfdlKKS9GXxKqXbTIhGspPi7mJqY_gJHboCP7gQLbTITOh6E-KI5p3Z9X5A595ATJ_QCuxGD97qDi02Omo7QvR_9OjDgPTQonlKkFIPw4iCQ599sKHf5m_jOz9Or4sXTncJ3jzep8X6_Gy9uCgvvy-_LOaXpa04pyUILqgVLaGOSkdERWqtmeQNY4xiS13bYEqahjtjZeUIaG5bQ4U1BgvTsNPiw6F2G8P9DtKoep8sdJ0eIOyS2msRVOK6zui7_9DbsItDXk4RlifLmlZVpmYHysaQUgSnttH3Ok6KYLVXr_bq1VF9Drx_rNUpu3JRD9anY4oKwkVNeebkgfvlO5ieaFWr-ers3xnlIevTCL-PWR3vVC2Y4Orm21I1V-sf8utSqpo9AB-Go_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317496244</pqid></control><display><type>article</type><title>Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Regev, Omri ; Reddy, Chaganti Srinivasa ; Nseir, Nora ; Zussman, Eyal</creator><creatorcontrib>Regev, Omri ; Reddy, Chaganti Srinivasa ; Nseir, Nora ; Zussman, Eyal</creatorcontrib><description>Injectable hydrogels represent biomaterials attractive for many biomedical applications. Here, a hybrid material composed of dextran‐crosslinked gelatin embedded with ≈100–1 000 µm long, electrospun bovine serum albumin fibers is described. Incorporation of fibers at weight fractions of 1–6% increases the hydrogel elastic modulus by up to ≈40% and decreases the gelation time by ≈20%. The addition of short fibers does not affect the injection of the pre‐gel solution throughout medical needles at moderate shear rates. Finally, viability of seeded fibroblasts confirms the biocompatibility of the composite scaffold. This hybrid represents a class of biomaterials that structurally mimics the ECMs of common tissues and that can be delivered by a minimal‐invasive approach. A hybrid biomaterial composed of a gelatin hydrogel and short electrospun albumin fibers is described. Rheological measurements show that embedded fibers allow monitoring the hybrid's stiffness without limiting injection of the pre‐gel solution. Cell assays demonstrate the hybrid's biocompatibility.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.201200012</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; Biocompatibility ; Biological and medical sciences ; Biomaterials ; Biomedical materials ; Composites ; Electrospinning ; electrospun fibers ; Exact sciences and technology ; Fibers ; Forms of application and semi-finished materials ; Gelatins ; Hydrogels ; injectability ; mechanical properties ; Medical sciences ; Polymer industry, paints, wood ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology of polymers ; Technology. Biomaterials. Equipments</subject><ispartof>Macromolecular materials and engineering, 2013-03, Vol.298 (3), p.283-291</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4552-e7572c7d12f29f17416aa395833320c2fd8021885fbc94f1ea5cdb27cbb07b83</citedby><cites>FETCH-LOGICAL-c4552-e7572c7d12f29f17416aa395833320c2fd8021885fbc94f1ea5cdb27cbb07b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.201200012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.201200012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27157625$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Regev, Omri</creatorcontrib><creatorcontrib>Reddy, Chaganti Srinivasa</creatorcontrib><creatorcontrib>Nseir, Nora</creatorcontrib><creatorcontrib>Zussman, Eyal</creatorcontrib><title>Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility</title><title>Macromolecular materials and engineering</title><addtitle>Macromol. Mater. Eng</addtitle><description>Injectable hydrogels represent biomaterials attractive for many biomedical applications. Here, a hybrid material composed of dextran‐crosslinked gelatin embedded with ≈100–1 000 µm long, electrospun bovine serum albumin fibers is described. Incorporation of fibers at weight fractions of 1–6% increases the hydrogel elastic modulus by up to ≈40% and decreases the gelation time by ≈20%. The addition of short fibers does not affect the injection of the pre‐gel solution throughout medical needles at moderate shear rates. Finally, viability of seeded fibroblasts confirms the biocompatibility of the composite scaffold. This hybrid represents a class of biomaterials that structurally mimics the ECMs of common tissues and that can be delivered by a minimal‐invasive approach. A hybrid biomaterial composed of a gelatin hydrogel and short electrospun albumin fibers is described. Rheological measurements show that embedded fibers allow monitoring the hybrid's stiffness without limiting injection of the pre‐gel solution. Cell assays demonstrate the hybrid's biocompatibility.</description><subject>Applied sciences</subject><subject>Biocompatibility</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Composites</subject><subject>Electrospinning</subject><subject>electrospun fibers</subject><subject>Exact sciences and technology</subject><subject>Fibers</subject><subject>Forms of application and semi-finished materials</subject><subject>Gelatins</subject><subject>Hydrogels</subject><subject>injectability</subject><subject>mechanical properties</subject><subject>Medical sciences</subject><subject>Polymer industry, paints, wood</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology of polymers</subject><subject>Technology. Biomaterials. Equipments</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM9v0zAYhiMEEmNw5WwJIXFJ8Y84jrmVausQK4it0o6W7Xym3pK4s1NB-Ovn0qlCXHaxLfl53-_TUxRvCZ4RjOnHXvcwo5hQjPPxrDghFZMlxbx6_vfdlKKS9GXxKqXbTIhGspPi7mJqY_gJHboCP7gQLbTITOh6E-KI5p3Z9X5A595ATJ_QCuxGD97qDi02Omo7QvR_9OjDgPTQonlKkFIPw4iCQ599sKHf5m_jOz9Or4sXTncJ3jzep8X6_Gy9uCgvvy-_LOaXpa04pyUILqgVLaGOSkdERWqtmeQNY4xiS13bYEqahjtjZeUIaG5bQ4U1BgvTsNPiw6F2G8P9DtKoep8sdJ0eIOyS2msRVOK6zui7_9DbsItDXk4RlifLmlZVpmYHysaQUgSnttH3Ok6KYLVXr_bq1VF9Drx_rNUpu3JRD9anY4oKwkVNeebkgfvlO5ieaFWr-ers3xnlIevTCL-PWR3vVC2Y4Orm21I1V-sf8utSqpo9AB-Go_o</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Regev, Omri</creator><creator>Reddy, Chaganti Srinivasa</creator><creator>Nseir, Nora</creator><creator>Zussman, Eyal</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201303</creationdate><title>Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility</title><author>Regev, Omri ; Reddy, Chaganti Srinivasa ; Nseir, Nora ; Zussman, Eyal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4552-e7572c7d12f29f17416aa395833320c2fd8021885fbc94f1ea5cdb27cbb07b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biocompatibility</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Composites</topic><topic>Electrospinning</topic><topic>electrospun fibers</topic><topic>Exact sciences and technology</topic><topic>Fibers</topic><topic>Forms of application and semi-finished materials</topic><topic>Gelatins</topic><topic>Hydrogels</topic><topic>injectability</topic><topic>mechanical properties</topic><topic>Medical sciences</topic><topic>Polymer industry, paints, wood</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology of polymers</topic><topic>Technology. Biomaterials. Equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Regev, Omri</creatorcontrib><creatorcontrib>Reddy, Chaganti Srinivasa</creatorcontrib><creatorcontrib>Nseir, Nora</creatorcontrib><creatorcontrib>Zussman, Eyal</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Regev, Omri</au><au>Reddy, Chaganti Srinivasa</au><au>Nseir, Nora</au><au>Zussman, Eyal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility</atitle><jtitle>Macromolecular materials and engineering</jtitle><addtitle>Macromol. Mater. Eng</addtitle><date>2013-03</date><risdate>2013</risdate><volume>298</volume><issue>3</issue><spage>283</spage><epage>291</epage><pages>283-291</pages><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Injectable hydrogels represent biomaterials attractive for many biomedical applications. Here, a hybrid material composed of dextran‐crosslinked gelatin embedded with ≈100–1 000 µm long, electrospun bovine serum albumin fibers is described. Incorporation of fibers at weight fractions of 1–6% increases the hydrogel elastic modulus by up to ≈40% and decreases the gelation time by ≈20%. The addition of short fibers does not affect the injection of the pre‐gel solution throughout medical needles at moderate shear rates. Finally, viability of seeded fibroblasts confirms the biocompatibility of the composite scaffold. This hybrid represents a class of biomaterials that structurally mimics the ECMs of common tissues and that can be delivered by a minimal‐invasive approach. A hybrid biomaterial composed of a gelatin hydrogel and short electrospun albumin fibers is described. Rheological measurements show that embedded fibers allow monitoring the hybrid's stiffness without limiting injection of the pre‐gel solution. Cell assays demonstrate the hybrid's biocompatibility.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mame.201200012</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-7492
ispartof Macromolecular materials and engineering, 2013-03, Vol.298 (3), p.283-291
issn 1438-7492
1439-2054
language eng
recordid cdi_proquest_miscellaneous_1439729066
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Biocompatibility
Biological and medical sciences
Biomaterials
Biomedical materials
Composites
Electrospinning
electrospun fibers
Exact sciences and technology
Fibers
Forms of application and semi-finished materials
Gelatins
Hydrogels
injectability
mechanical properties
Medical sciences
Polymer industry, paints, wood
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology of polymers
Technology. Biomaterials. Equipments
title Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogel%20Reinforced%20by%20Short%20Albumin%20Fibers:%20Mechanical%20Characterization%20and%20Assessment%20of%20Biocompatibility&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Regev,%20Omri&rft.date=2013-03&rft.volume=298&rft.issue=3&rft.spage=283&rft.epage=291&rft.pages=283-291&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.201200012&rft_dat=%3Cproquest_cross%3E2920255811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317496244&rft_id=info:pmid/&rfr_iscdi=true