Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach

SUMMARY With the aim of accurately modelling free‐surface flow of two immiscible fluids, this study presents the development of a new volume‐of‐fluid free‐surface capturing formulation. By building on existing volume‐of‐fluid approaches, the new formulation combines a blended higher resolution schem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2013-02, Vol.71 (6), p.788-804
Hauptverfasser: Heyns, J. A., Malan, A. G., Harms, T. M., Oxtoby, O. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 804
container_issue 6
container_start_page 788
container_title International journal for numerical methods in fluids
container_volume 71
creator Heyns, J. A.
Malan, A. G.
Harms, T. M.
Oxtoby, O. F.
description SUMMARY With the aim of accurately modelling free‐surface flow of two immiscible fluids, this study presents the development of a new volume‐of‐fluid free‐surface capturing formulation. By building on existing volume‐of‐fluid approaches, the new formulation combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume‐of‐fluid equation. This reduces the numerical smearing of the interface associated with explicit higher resolution schemes while limiting the contribution of the artificial compressive term to ensure the integrity of the interface shape is maintained. Furthermore, the computational efficiency of the the higher resolution scheme is improved through the reformulation of the normalised variable approach and the implementation of a new higher resolution blending function. The volume‐of‐fluid equation is discretised via an unstructured vertex‐centred finite volume method and solved via a Jacobian‐type dual time‐stepping approach. Copyright © 2012 John Wiley & Sons, Ltd. This study presents the development of a new volume‐of‐fluid free‐surface capturing formulation, which combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume‐of‐fluid equation. The formulation reduces numerical smearing of the interface associated with higher resolution schemes at higher Courant numbers, while maintaining the integrity of the interface shape.
doi_str_mv 10.1002/fld.3694
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439727548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439727548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3644-2adb90f5493afd30ccdd2227a4a87b0fd5b278a458dd9474b5150a399a4c03c03</originalsourceid><addsrcrecordid>eNp1kVtrFDEUx4NYcG0FP0LAF19Sc51MHrXbroXFUlF8DJlc7NTMZEwmW_fNj-5s6wUF4cA58P-dC-cPwHOCTwnG9FWI7pQ1ij8CK4KVRJg17DFYYSoJoliRJ-BpKbcYY0VbtgLf137nY5oGP84wBWigTcOUfSn9zsNSczDWQ2umueZ-_AxDykONZu7TeKjhkJyP8V7J3qNfDSGmO9jtYS0Hab7xcJdiHTxKAYVYewfNNOVk7M0JOAomFv_sZz4GHy_OP5y9RdurzeXZ6y2yrOEcUeM6hYPgipngGLbWOUqpNNy0ssPBiY7K1nDROqe45J0gAhumlOEWsyWOwcuHucvar9WXWQ99scvtZvSpFk04U5JKwdsFffEPeptqHpfrNFne2FKGifgz0OZUSvZBT7kfTN5rgvXBCr1YoQ9WLCh6QO_66Pf_5fTFdv0335fZf_vNm_xFN5JJoT-92-hNw67F-v0bLdkP4uia5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1271823015</pqid></control><display><type>article</type><title>Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach</title><source>Wiley Journals</source><creator>Heyns, J. A. ; Malan, A. G. ; Harms, T. M. ; Oxtoby, O. F.</creator><creatorcontrib>Heyns, J. A. ; Malan, A. G. ; Harms, T. M. ; Oxtoby, O. F.</creatorcontrib><description>SUMMARY With the aim of accurately modelling free‐surface flow of two immiscible fluids, this study presents the development of a new volume‐of‐fluid free‐surface capturing formulation. By building on existing volume‐of‐fluid approaches, the new formulation combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume‐of‐fluid equation. This reduces the numerical smearing of the interface associated with explicit higher resolution schemes while limiting the contribution of the artificial compressive term to ensure the integrity of the interface shape is maintained. Furthermore, the computational efficiency of the the higher resolution scheme is improved through the reformulation of the normalised variable approach and the implementation of a new higher resolution blending function. The volume‐of‐fluid equation is discretised via an unstructured vertex‐centred finite volume method and solved via a Jacobian‐type dual time‐stepping approach. Copyright © 2012 John Wiley &amp; Sons, Ltd. This study presents the development of a new volume‐of‐fluid free‐surface capturing formulation, which combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume‐of‐fluid equation. The formulation reduces numerical smearing of the interface associated with higher resolution schemes at higher Courant numbers, while maintaining the integrity of the interface shape.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.3694</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>artificial compressive term ; Blended ; Computational fluid dynamics ; Fluid flow ; Fluids ; higher resolution schemes ; Mathematical analysis ; Mathematical models ; Modelling ; surface capturing ; volume-of-fluid</subject><ispartof>International journal for numerical methods in fluids, 2013-02, Vol.71 (6), p.788-804</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3644-2adb90f5493afd30ccdd2227a4a87b0fd5b278a458dd9474b5150a399a4c03c03</citedby><cites>FETCH-LOGICAL-c3644-2adb90f5493afd30ccdd2227a4a87b0fd5b278a458dd9474b5150a399a4c03c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.3694$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.3694$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Heyns, J. A.</creatorcontrib><creatorcontrib>Malan, A. G.</creatorcontrib><creatorcontrib>Harms, T. M.</creatorcontrib><creatorcontrib>Oxtoby, O. F.</creatorcontrib><title>Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>SUMMARY With the aim of accurately modelling free‐surface flow of two immiscible fluids, this study presents the development of a new volume‐of‐fluid free‐surface capturing formulation. By building on existing volume‐of‐fluid approaches, the new formulation combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume‐of‐fluid equation. This reduces the numerical smearing of the interface associated with explicit higher resolution schemes while limiting the contribution of the artificial compressive term to ensure the integrity of the interface shape is maintained. Furthermore, the computational efficiency of the the higher resolution scheme is improved through the reformulation of the normalised variable approach and the implementation of a new higher resolution blending function. The volume‐of‐fluid equation is discretised via an unstructured vertex‐centred finite volume method and solved via a Jacobian‐type dual time‐stepping approach. Copyright © 2012 John Wiley &amp; Sons, Ltd. This study presents the development of a new volume‐of‐fluid free‐surface capturing formulation, which combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume‐of‐fluid equation. The formulation reduces numerical smearing of the interface associated with higher resolution schemes at higher Courant numbers, while maintaining the integrity of the interface shape.</description><subject>artificial compressive term</subject><subject>Blended</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>higher resolution schemes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>surface capturing</subject><subject>volume-of-fluid</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kVtrFDEUx4NYcG0FP0LAF19Sc51MHrXbroXFUlF8DJlc7NTMZEwmW_fNj-5s6wUF4cA58P-dC-cPwHOCTwnG9FWI7pQ1ij8CK4KVRJg17DFYYSoJoliRJ-BpKbcYY0VbtgLf137nY5oGP84wBWigTcOUfSn9zsNSczDWQ2umueZ-_AxDykONZu7TeKjhkJyP8V7J3qNfDSGmO9jtYS0Hab7xcJdiHTxKAYVYewfNNOVk7M0JOAomFv_sZz4GHy_OP5y9RdurzeXZ6y2yrOEcUeM6hYPgipngGLbWOUqpNNy0ssPBiY7K1nDROqe45J0gAhumlOEWsyWOwcuHucvar9WXWQ99scvtZvSpFk04U5JKwdsFffEPeptqHpfrNFne2FKGifgz0OZUSvZBT7kfTN5rgvXBCr1YoQ9WLCh6QO_66Pf_5fTFdv0335fZf_vNm_xFN5JJoT-92-hNw67F-v0bLdkP4uia5g</recordid><startdate>20130228</startdate><enddate>20130228</enddate><creator>Heyns, J. A.</creator><creator>Malan, A. G.</creator><creator>Harms, T. M.</creator><creator>Oxtoby, O. F.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130228</creationdate><title>Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach</title><author>Heyns, J. A. ; Malan, A. G. ; Harms, T. M. ; Oxtoby, O. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3644-2adb90f5493afd30ccdd2227a4a87b0fd5b278a458dd9474b5150a399a4c03c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>artificial compressive term</topic><topic>Blended</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>higher resolution schemes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>surface capturing</topic><topic>volume-of-fluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heyns, J. A.</creatorcontrib><creatorcontrib>Malan, A. G.</creatorcontrib><creatorcontrib>Harms, T. M.</creatorcontrib><creatorcontrib>Oxtoby, O. F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heyns, J. A.</au><au>Malan, A. G.</au><au>Harms, T. M.</au><au>Oxtoby, O. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2013-02-28</date><risdate>2013</risdate><volume>71</volume><issue>6</issue><spage>788</spage><epage>804</epage><pages>788-804</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>SUMMARY With the aim of accurately modelling free‐surface flow of two immiscible fluids, this study presents the development of a new volume‐of‐fluid free‐surface capturing formulation. By building on existing volume‐of‐fluid approaches, the new formulation combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume‐of‐fluid equation. This reduces the numerical smearing of the interface associated with explicit higher resolution schemes while limiting the contribution of the artificial compressive term to ensure the integrity of the interface shape is maintained. Furthermore, the computational efficiency of the the higher resolution scheme is improved through the reformulation of the normalised variable approach and the implementation of a new higher resolution blending function. The volume‐of‐fluid equation is discretised via an unstructured vertex‐centred finite volume method and solved via a Jacobian‐type dual time‐stepping approach. Copyright © 2012 John Wiley &amp; Sons, Ltd. This study presents the development of a new volume‐of‐fluid free‐surface capturing formulation, which combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume‐of‐fluid equation. The formulation reduces numerical smearing of the interface associated with higher resolution schemes at higher Courant numbers, while maintaining the integrity of the interface shape.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/fld.3694</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2013-02, Vol.71 (6), p.788-804
issn 0271-2091
1097-0363
language eng
recordid cdi_proquest_miscellaneous_1439727548
source Wiley Journals
subjects artificial compressive term
Blended
Computational fluid dynamics
Fluid flow
Fluids
higher resolution schemes
Mathematical analysis
Mathematical models
Modelling
surface capturing
volume-of-fluid
title Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20compressive%20surface%20capturing%20formulation%20for%20modelling%20free-surface%20flow%20by%20using%20the%20volume-of-fluid%20approach&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Heyns,%20J.%20A.&rft.date=2013-02-28&rft.volume=71&rft.issue=6&rft.spage=788&rft.epage=804&rft.pages=788-804&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.3694&rft_dat=%3Cproquest_cross%3E1439727548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1271823015&rft_id=info:pmid/&rfr_iscdi=true