Improved error and work estimates for high-order elements

SUMMARY Work estimates for high‐order elements are derived. The comparison of error and work estimates shows that even for relative accuracy in the 0.1% range, which is one order below the typical accuracy of engineering interest (1% range), linear elements may outperform all higher‐order elements....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2013-08, Vol.72 (11), p.1207-1218
1. Verfasser: Lohner, Rainald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1218
container_issue 11
container_start_page 1207
container_title International journal for numerical methods in fluids
container_volume 72
creator Lohner, Rainald
description SUMMARY Work estimates for high‐order elements are derived. The comparison of error and work estimates shows that even for relative accuracy in the 0.1% range, which is one order below the typical accuracy of engineering interest (1% range), linear elements may outperform all higher‐order elements. As expected, the estimates also show that the optimal order of element in terms of work and storage demands depends on the desired relative accuracy. The comparison of work estimates for high‐order elements and their finite difference counterparts reveals a work‐ratio of several orders of magnitude. It thus becomes questionable if general geometric flexibility via micro‐unstructured grids is worth such a high cost. Copyright © 2013 John Wiley & Sons, Ltd. The comparison of error and work estimates shows that even for relative accuracy in the 0.1% range, which is one order below the typical accuracy of engineering interest (1% range), linear elements may outperform all higher‐order elements. As expected, the estimates also show that the optimal order of elements in terms of work and storage demands depends on the desired relative accuracy. The comparison of work estimates for high‐order elements and their finite difference counterparts reveals a work‐ratio of several orders of magnitude. It thus becomes questionable if general geometric flexibility via micro‐unstructured grids is worth such a high cost.
doi_str_mv 10.1002/fld.3783
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439727213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439727213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3973-37c623f15a0003dcd415c6f607f6e078b140a68cd9651f26fc236ce21051b4963</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKfgTyj44kvnTdImzaObbg6mgkx8DF1647q160w25_69GRNFwacLh49zzj2EnFPoUAB2Zauiw2XGD0iLgpIxcMEPSQuYpDEDRY_JifczAFAs4y2ihvXSNe9YROhc46J8UUSbxs0j9KuyzlfoIxvkafk6jRtXoIuwwhoXK39KjmxeeTz7um3y3L8d9-7i0eNg2LsexYYryWMujWDc0jQPmbwwRUJTI6wAaQWCzCY0gVxkplAipZYJaxgXBhmFlE4SJXibXO59Q8-3dail69IbrKp8gc3aa5qEHCYZ5QG9-IPOmrVbhHaacpWlEhJIfwyNa7x3aPXShVfdVlPQuw112FDvNgxovEc3ZYXbfzndH9385ku_wo9vPndzLSSXqX55GOj7cVeoJ9HVI_4JmBN-6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398570405</pqid></control><display><type>article</type><title>Improved error and work estimates for high-order elements</title><source>Access via Wiley Online Library</source><creator>Lohner, Rainald</creator><creatorcontrib>Lohner, Rainald</creatorcontrib><description>SUMMARY Work estimates for high‐order elements are derived. The comparison of error and work estimates shows that even for relative accuracy in the 0.1% range, which is one order below the typical accuracy of engineering interest (1% range), linear elements may outperform all higher‐order elements. As expected, the estimates also show that the optimal order of element in terms of work and storage demands depends on the desired relative accuracy. The comparison of work estimates for high‐order elements and their finite difference counterparts reveals a work‐ratio of several orders of magnitude. It thus becomes questionable if general geometric flexibility via micro‐unstructured grids is worth such a high cost. Copyright © 2013 John Wiley &amp; Sons, Ltd. The comparison of error and work estimates shows that even for relative accuracy in the 0.1% range, which is one order below the typical accuracy of engineering interest (1% range), linear elements may outperform all higher‐order elements. As expected, the estimates also show that the optimal order of elements in terms of work and storage demands depends on the desired relative accuracy. The comparison of work estimates for high‐order elements and their finite difference counterparts reveals a work‐ratio of several orders of magnitude. It thus becomes questionable if general geometric flexibility via micro‐unstructured grids is worth such a high cost.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.3783</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Accuracy ; CFD ; Computational fluid dynamics ; Demand ; Errors ; Estimates ; finite differences ; finite elements ; Flexibility ; high-order schemes ; Mathematical analysis ; Optimization</subject><ispartof>International journal for numerical methods in fluids, 2013-08, Vol.72 (11), p.1207-1218</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3973-37c623f15a0003dcd415c6f607f6e078b140a68cd9651f26fc236ce21051b4963</citedby><cites>FETCH-LOGICAL-c3973-37c623f15a0003dcd415c6f607f6e078b140a68cd9651f26fc236ce21051b4963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.3783$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.3783$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lohner, Rainald</creatorcontrib><title>Improved error and work estimates for high-order elements</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>SUMMARY Work estimates for high‐order elements are derived. The comparison of error and work estimates shows that even for relative accuracy in the 0.1% range, which is one order below the typical accuracy of engineering interest (1% range), linear elements may outperform all higher‐order elements. As expected, the estimates also show that the optimal order of element in terms of work and storage demands depends on the desired relative accuracy. The comparison of work estimates for high‐order elements and their finite difference counterparts reveals a work‐ratio of several orders of magnitude. It thus becomes questionable if general geometric flexibility via micro‐unstructured grids is worth such a high cost. Copyright © 2013 John Wiley &amp; Sons, Ltd. The comparison of error and work estimates shows that even for relative accuracy in the 0.1% range, which is one order below the typical accuracy of engineering interest (1% range), linear elements may outperform all higher‐order elements. As expected, the estimates also show that the optimal order of elements in terms of work and storage demands depends on the desired relative accuracy. The comparison of work estimates for high‐order elements and their finite difference counterparts reveals a work‐ratio of several orders of magnitude. It thus becomes questionable if general geometric flexibility via micro‐unstructured grids is worth such a high cost.</description><subject>Accuracy</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Demand</subject><subject>Errors</subject><subject>Estimates</subject><subject>finite differences</subject><subject>finite elements</subject><subject>Flexibility</subject><subject>high-order schemes</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKfgTyj44kvnTdImzaObbg6mgkx8DF1647q160w25_69GRNFwacLh49zzj2EnFPoUAB2Zauiw2XGD0iLgpIxcMEPSQuYpDEDRY_JifczAFAs4y2ihvXSNe9YROhc46J8UUSbxs0j9KuyzlfoIxvkafk6jRtXoIuwwhoXK39KjmxeeTz7um3y3L8d9-7i0eNg2LsexYYryWMujWDc0jQPmbwwRUJTI6wAaQWCzCY0gVxkplAipZYJaxgXBhmFlE4SJXibXO59Q8-3dail69IbrKp8gc3aa5qEHCYZ5QG9-IPOmrVbhHaacpWlEhJIfwyNa7x3aPXShVfdVlPQuw112FDvNgxovEc3ZYXbfzndH9385ku_wo9vPndzLSSXqX55GOj7cVeoJ9HVI_4JmBN-6w</recordid><startdate>20130820</startdate><enddate>20130820</enddate><creator>Lohner, Rainald</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130820</creationdate><title>Improved error and work estimates for high-order elements</title><author>Lohner, Rainald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3973-37c623f15a0003dcd415c6f607f6e078b140a68cd9651f26fc236ce21051b4963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Demand</topic><topic>Errors</topic><topic>Estimates</topic><topic>finite differences</topic><topic>finite elements</topic><topic>Flexibility</topic><topic>high-order schemes</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lohner, Rainald</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lohner, Rainald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved error and work estimates for high-order elements</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2013-08-20</date><risdate>2013</risdate><volume>72</volume><issue>11</issue><spage>1207</spage><epage>1218</epage><pages>1207-1218</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>SUMMARY Work estimates for high‐order elements are derived. The comparison of error and work estimates shows that even for relative accuracy in the 0.1% range, which is one order below the typical accuracy of engineering interest (1% range), linear elements may outperform all higher‐order elements. As expected, the estimates also show that the optimal order of element in terms of work and storage demands depends on the desired relative accuracy. The comparison of work estimates for high‐order elements and their finite difference counterparts reveals a work‐ratio of several orders of magnitude. It thus becomes questionable if general geometric flexibility via micro‐unstructured grids is worth such a high cost. Copyright © 2013 John Wiley &amp; Sons, Ltd. The comparison of error and work estimates shows that even for relative accuracy in the 0.1% range, which is one order below the typical accuracy of engineering interest (1% range), linear elements may outperform all higher‐order elements. As expected, the estimates also show that the optimal order of elements in terms of work and storage demands depends on the desired relative accuracy. The comparison of work estimates for high‐order elements and their finite difference counterparts reveals a work‐ratio of several orders of magnitude. It thus becomes questionable if general geometric flexibility via micro‐unstructured grids is worth such a high cost.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/fld.3783</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2013-08, Vol.72 (11), p.1207-1218
issn 0271-2091
1097-0363
language eng
recordid cdi_proquest_miscellaneous_1439727213
source Access via Wiley Online Library
subjects Accuracy
CFD
Computational fluid dynamics
Demand
Errors
Estimates
finite differences
finite elements
Flexibility
high-order schemes
Mathematical analysis
Optimization
title Improved error and work estimates for high-order elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20error%20and%20work%20estimates%20for%20high-order%20elements&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Lohner,%20Rainald&rft.date=2013-08-20&rft.volume=72&rft.issue=11&rft.spage=1207&rft.epage=1218&rft.pages=1207-1218&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.3783&rft_dat=%3Cproquest_cross%3E1439727213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398570405&rft_id=info:pmid/&rfr_iscdi=true