Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures
— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos...
Gespeichert in:
Veröffentlicht in: | Meteoritics & planetary science 2000-07, Vol.35 (4), p.771-781 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 781 |
---|---|
container_issue | 4 |
container_start_page | 771 |
container_title | Meteoritics & planetary science |
container_volume | 35 |
creator | FAGAN, Timothy J. KROT, Alexander N. KEIL, Klaus |
description | — Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size ( |
doi_str_mv | 10.1111/j.1945-5100.2000.tb01461.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439727065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439727065</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5301-6df38359047d46d082083674556d47e97949d4a8d631c23383ed316df228e0ff3</originalsourceid><addsrcrecordid>eNqVkE1PwjAAhhejiYj-h8UTHjbb9WvlJCGKRFATJB6bunZS3Ae2W4R_b5cR7_bQPknf9z08QXANQQz9ud3GkGMSEQhAnAB_NR8AYgrj_Ukw-Ps69QxSGnHE-Hlw4dwWAEQgwoNgPZVFZtoykkVbmsqDNdkmNFVWtM7UlfMY6so1sjGNDrNNXSnryYWj-c04XJpKW1nUn4dQVips9L5prXaXwVkuC6evju8wWD_cv00fo8XLbD6dLCJJEIARVTlKEeEAM4WpAmkCUkQZJoQqzDRnHHOFZaooglmCfFYrBH0rSVIN8hwNg1G_u7P1d6tdI0rjMl0UstJ16wTEiLOEAUp8dNxHM1s7Z3UudtaU0h4EBKJzKbaiEyY6YaJzKY4uxd6X7_ryjyn04R9NsZy8rjr0E1E_YZy39Dch7ZegDDEi3p9nYgVXBM3Qk0jRL0Dfil8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439727065</pqid></control><display><type>article</type><title>Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>FAGAN, Timothy J. ; KROT, Alexander N. ; KEIL, Klaus</creator><creatorcontrib>FAGAN, Timothy J. ; KROT, Alexander N. ; KEIL, Klaus</creatorcontrib><description>— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (<100μm), low abundance (<1% by mode in thin section), occurrence of only spinel or hibonite‐rich types, and presence of primary Ti‐(±V)‐oxides, and secondary geikelite and Ti, Fe‐sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups.
The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high‐temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite‐chondrite‐forming regions or (2) O fugacities fluctuated within the enstatite‐chondrite‐forming region. In contrast, secondary geikelite and Ti‐Fe‐sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent‐body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/j.1945-5100.2000.tb01461.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Chondrites ; Enstatite ; Fugacity ; Minerals ; Perovskites ; Surface layer ; Texture ; Titanium</subject><ispartof>Meteoritics & planetary science, 2000-07, Vol.35 (4), p.771-781</ispartof><rights>2000 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5301-6df38359047d46d082083674556d47e97949d4a8d631c23383ed316df228e0ff3</citedby><cites>FETCH-LOGICAL-a5301-6df38359047d46d082083674556d47e97949d4a8d631c23383ed316df228e0ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1945-5100.2000.tb01461.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1945-5100.2000.tb01461.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>FAGAN, Timothy J.</creatorcontrib><creatorcontrib>KROT, Alexander N.</creatorcontrib><creatorcontrib>KEIL, Klaus</creatorcontrib><title>Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures</title><title>Meteoritics & planetary science</title><description>— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (<100μm), low abundance (<1% by mode in thin section), occurrence of only spinel or hibonite‐rich types, and presence of primary Ti‐(±V)‐oxides, and secondary geikelite and Ti, Fe‐sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups.
The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high‐temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite‐chondrite‐forming regions or (2) O fugacities fluctuated within the enstatite‐chondrite‐forming region. In contrast, secondary geikelite and Ti‐Fe‐sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent‐body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.</description><subject>Chondrites</subject><subject>Enstatite</subject><subject>Fugacity</subject><subject>Minerals</subject><subject>Perovskites</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Titanium</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqVkE1PwjAAhhejiYj-h8UTHjbb9WvlJCGKRFATJB6bunZS3Ae2W4R_b5cR7_bQPknf9z08QXANQQz9ud3GkGMSEQhAnAB_NR8AYgrj_Ukw-Ps69QxSGnHE-Hlw4dwWAEQgwoNgPZVFZtoykkVbmsqDNdkmNFVWtM7UlfMY6so1sjGNDrNNXSnryYWj-c04XJpKW1nUn4dQVips9L5prXaXwVkuC6evju8wWD_cv00fo8XLbD6dLCJJEIARVTlKEeEAM4WpAmkCUkQZJoQqzDRnHHOFZaooglmCfFYrBH0rSVIN8hwNg1G_u7P1d6tdI0rjMl0UstJ16wTEiLOEAUp8dNxHM1s7Z3UudtaU0h4EBKJzKbaiEyY6YaJzKY4uxd6X7_ryjyn04R9NsZy8rjr0E1E_YZy39Dch7ZegDDEi3p9nYgVXBM3Qk0jRL0Dfil8</recordid><startdate>200007</startdate><enddate>200007</enddate><creator>FAGAN, Timothy J.</creator><creator>KROT, Alexander N.</creator><creator>KEIL, Klaus</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200007</creationdate><title>Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures</title><author>FAGAN, Timothy J. ; KROT, Alexander N. ; KEIL, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5301-6df38359047d46d082083674556d47e97949d4a8d631c23383ed316df228e0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Chondrites</topic><topic>Enstatite</topic><topic>Fugacity</topic><topic>Minerals</topic><topic>Perovskites</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FAGAN, Timothy J.</creatorcontrib><creatorcontrib>KROT, Alexander N.</creatorcontrib><creatorcontrib>KEIL, Klaus</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics & planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FAGAN, Timothy J.</au><au>KROT, Alexander N.</au><au>KEIL, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures</atitle><jtitle>Meteoritics & planetary science</jtitle><date>2000-07</date><risdate>2000</risdate><volume>35</volume><issue>4</issue><spage>771</spage><epage>781</epage><pages>771-781</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (<100μm), low abundance (<1% by mode in thin section), occurrence of only spinel or hibonite‐rich types, and presence of primary Ti‐(±V)‐oxides, and secondary geikelite and Ti, Fe‐sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups.
The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high‐temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite‐chondrite‐forming regions or (2) O fugacities fluctuated within the enstatite‐chondrite‐forming region. In contrast, secondary geikelite and Ti‐Fe‐sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent‐body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1945-5100.2000.tb01461.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1086-9379 |
ispartof | Meteoritics & planetary science, 2000-07, Vol.35 (4), p.771-781 |
issn | 1086-9379 1945-5100 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439727065 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Chondrites Enstatite Fugacity Minerals Perovskites Surface layer Texture Titanium |
title | Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium-aluminum-rich%20inclusions%20in%20enstatite%20chondrites%20(I):%20Mineralogy%20and%20textures&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=FAGAN,%20Timothy%20J.&rft.date=2000-07&rft.volume=35&rft.issue=4&rft.spage=771&rft.epage=781&rft.pages=771-781&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/j.1945-5100.2000.tb01461.x&rft_dat=%3Cproquest_cross%3E1439727065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439727065&rft_id=info:pmid/&rfr_iscdi=true |