Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures

— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteoritics & planetary science 2000-07, Vol.35 (4), p.771-781
Hauptverfasser: FAGAN, Timothy J., KROT, Alexander N., KEIL, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781
container_issue 4
container_start_page 771
container_title Meteoritics & planetary science
container_volume 35
creator FAGAN, Timothy J.
KROT, Alexander N.
KEIL, Klaus
description — Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (
doi_str_mv 10.1111/j.1945-5100.2000.tb01461.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439727065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439727065</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5301-6df38359047d46d082083674556d47e97949d4a8d631c23383ed316df228e0ff3</originalsourceid><addsrcrecordid>eNqVkE1PwjAAhhejiYj-h8UTHjbb9WvlJCGKRFATJB6bunZS3Ae2W4R_b5cR7_bQPknf9z08QXANQQz9ud3GkGMSEQhAnAB_NR8AYgrj_Ukw-Ps69QxSGnHE-Hlw4dwWAEQgwoNgPZVFZtoykkVbmsqDNdkmNFVWtM7UlfMY6so1sjGNDrNNXSnryYWj-c04XJpKW1nUn4dQVips9L5prXaXwVkuC6evju8wWD_cv00fo8XLbD6dLCJJEIARVTlKEeEAM4WpAmkCUkQZJoQqzDRnHHOFZaooglmCfFYrBH0rSVIN8hwNg1G_u7P1d6tdI0rjMl0UstJ16wTEiLOEAUp8dNxHM1s7Z3UudtaU0h4EBKJzKbaiEyY6YaJzKY4uxd6X7_ryjyn04R9NsZy8rjr0E1E_YZy39Dch7ZegDDEi3p9nYgVXBM3Qk0jRL0Dfil8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439727065</pqid></control><display><type>article</type><title>Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>FAGAN, Timothy J. ; KROT, Alexander N. ; KEIL, Klaus</creator><creatorcontrib>FAGAN, Timothy J. ; KROT, Alexander N. ; KEIL, Klaus</creatorcontrib><description>— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (&lt;100μm), low abundance (&lt;1% by mode in thin section), occurrence of only spinel or hibonite‐rich types, and presence of primary Ti‐(±V)‐oxides, and secondary geikelite and Ti, Fe‐sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups. The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high‐temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite‐chondrite‐forming regions or (2) O fugacities fluctuated within the enstatite‐chondrite‐forming region. In contrast, secondary geikelite and Ti‐Fe‐sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent‐body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/j.1945-5100.2000.tb01461.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Chondrites ; Enstatite ; Fugacity ; Minerals ; Perovskites ; Surface layer ; Texture ; Titanium</subject><ispartof>Meteoritics &amp; planetary science, 2000-07, Vol.35 (4), p.771-781</ispartof><rights>2000 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5301-6df38359047d46d082083674556d47e97949d4a8d631c23383ed316df228e0ff3</citedby><cites>FETCH-LOGICAL-a5301-6df38359047d46d082083674556d47e97949d4a8d631c23383ed316df228e0ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1945-5100.2000.tb01461.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1945-5100.2000.tb01461.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>FAGAN, Timothy J.</creatorcontrib><creatorcontrib>KROT, Alexander N.</creatorcontrib><creatorcontrib>KEIL, Klaus</creatorcontrib><title>Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures</title><title>Meteoritics &amp; planetary science</title><description>— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (&lt;100μm), low abundance (&lt;1% by mode in thin section), occurrence of only spinel or hibonite‐rich types, and presence of primary Ti‐(±V)‐oxides, and secondary geikelite and Ti, Fe‐sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups. The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high‐temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite‐chondrite‐forming regions or (2) O fugacities fluctuated within the enstatite‐chondrite‐forming region. In contrast, secondary geikelite and Ti‐Fe‐sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent‐body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.</description><subject>Chondrites</subject><subject>Enstatite</subject><subject>Fugacity</subject><subject>Minerals</subject><subject>Perovskites</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Titanium</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqVkE1PwjAAhhejiYj-h8UTHjbb9WvlJCGKRFATJB6bunZS3Ae2W4R_b5cR7_bQPknf9z08QXANQQz9ud3GkGMSEQhAnAB_NR8AYgrj_Ukw-Ps69QxSGnHE-Hlw4dwWAEQgwoNgPZVFZtoykkVbmsqDNdkmNFVWtM7UlfMY6so1sjGNDrNNXSnryYWj-c04XJpKW1nUn4dQVips9L5prXaXwVkuC6evju8wWD_cv00fo8XLbD6dLCJJEIARVTlKEeEAM4WpAmkCUkQZJoQqzDRnHHOFZaooglmCfFYrBH0rSVIN8hwNg1G_u7P1d6tdI0rjMl0UstJ16wTEiLOEAUp8dNxHM1s7Z3UudtaU0h4EBKJzKbaiEyY6YaJzKY4uxd6X7_ryjyn04R9NsZy8rjr0E1E_YZy39Dch7ZegDDEi3p9nYgVXBM3Qk0jRL0Dfil8</recordid><startdate>200007</startdate><enddate>200007</enddate><creator>FAGAN, Timothy J.</creator><creator>KROT, Alexander N.</creator><creator>KEIL, Klaus</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200007</creationdate><title>Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures</title><author>FAGAN, Timothy J. ; KROT, Alexander N. ; KEIL, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5301-6df38359047d46d082083674556d47e97949d4a8d631c23383ed316df228e0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Chondrites</topic><topic>Enstatite</topic><topic>Fugacity</topic><topic>Minerals</topic><topic>Perovskites</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FAGAN, Timothy J.</creatorcontrib><creatorcontrib>KROT, Alexander N.</creatorcontrib><creatorcontrib>KEIL, Klaus</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics &amp; planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FAGAN, Timothy J.</au><au>KROT, Alexander N.</au><au>KEIL, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures</atitle><jtitle>Meteoritics &amp; planetary science</jtitle><date>2000-07</date><risdate>2000</risdate><volume>35</volume><issue>4</issue><spage>771</spage><epage>781</epage><pages>771-781</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (&lt;100μm), low abundance (&lt;1% by mode in thin section), occurrence of only spinel or hibonite‐rich types, and presence of primary Ti‐(±V)‐oxides, and secondary geikelite and Ti, Fe‐sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups. The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high‐temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite‐chondrite‐forming regions or (2) O fugacities fluctuated within the enstatite‐chondrite‐forming region. In contrast, secondary geikelite and Ti‐Fe‐sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent‐body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1945-5100.2000.tb01461.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1086-9379
ispartof Meteoritics & planetary science, 2000-07, Vol.35 (4), p.771-781
issn 1086-9379
1945-5100
language eng
recordid cdi_proquest_miscellaneous_1439727065
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Chondrites
Enstatite
Fugacity
Minerals
Perovskites
Surface layer
Texture
Titanium
title Calcium-aluminum-rich inclusions in enstatite chondrites (I): Mineralogy and textures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium-aluminum-rich%20inclusions%20in%20enstatite%20chondrites%20(I):%20Mineralogy%20and%20textures&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=FAGAN,%20Timothy%20J.&rft.date=2000-07&rft.volume=35&rft.issue=4&rft.spage=771&rft.epage=781&rft.pages=771-781&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/j.1945-5100.2000.tb01461.x&rft_dat=%3Cproquest_cross%3E1439727065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439727065&rft_id=info:pmid/&rfr_iscdi=true