Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations
Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C‐N interactions of curren...
Gespeichert in:
Veröffentlicht in: | Global change biology 2013-10, Vol.19 (10), p.2986-2998 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2998 |
---|---|
container_issue | 10 |
container_start_page | 2986 |
container_title | Global change biology |
container_volume | 19 |
creator | Thomas, R. Quinn Zaehle, Sönke Templer, Pamela H. Goodale, Christine L. |
description | Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C‐N interactions of current models compare to field observations, identify the processes causing model divergence, and identify future observation and experiment needs. We used a set of N‐fertilization simulations from two global biogeochemical models (CLM‐CN and O‐CN) that use different approaches to modeling C‐N interactions. On the global scale, net primary productivity (NPP) in the CLM‐CN model was substantially more responsive to N fertilization than in the O‐CN model. The most striking difference between the two models occurred for humid tropical forests, where the CLM‐CN simulated a 62% increase in NPP at high N addition levels (30 g N m−2 yr−1), while the O‐CN predicted a 2% decrease in NPP due to N fertilization increasing plant respiration more than photosynthesis. Across 35 temperate and boreal forest sites with field N‐fertilization experiments, we show that the CLM‐CN simulated a 46% increase in aboveground NPP in response to N, which exceeded the observed increase of 25%. In contrast, the O‐CN only simulated a 6% increase in aboveground NPP at the N‐fertilization sites. Despite the small response of NPP to N fertilization, the O‐CN model accurately simulated ecosystem retention of N and the fate of added N to vegetation when compared to empirical 15N tracer application studies. In contrast, the CLM‐CN predicted lower total ecosystem N retention and partitioned more losses to volatilization than estimated from observed N budgets of small catchments. These results point to the need for model improvements in both models in order to enhance the accuracy with which global C‐N cycle feedbacks are simulated. |
doi_str_mv | 10.1111/gcb.12281 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439234462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061544881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4871-8df7bc92bb3fe63d93bcd606a1c90a3c4af069cb7f2997c2709367989d5047f43</originalsourceid><addsrcrecordid>eNqN0V1rFDEUBuBBFFurF_4BGRBBL6bN1yST3umq48dSQSpehiSTbFNnkjXJuvbfm-1sKwhCc5MEnnMOh7eqnkJwDMs5WWl1DBHq4L3qEGLaNoh09P7u3ZIGAogPqkcpXQIAMAL0YXWAMCOEYnZY2X4MSo71WuZsok91sLV3OYaV8fXoJpdldsGf1jp4G4PPzq_qvA31aq5TrsigL8zkdPlOYTBjqrcuX9RBJRN_XZenx9UDK8dknuzvo-rb-3fniw_N8kv_cfF62WjSMdh0g2VKc6QUtobigWOlBwqohJoDiTWRFlCuFbOIc6YRAxxTxjs-tIAwS_BR9XLuu47h58akLCaXtBlH6U3YJAEJ5giX3dHdKGQEwbtQgDnlfEef_0Mvwyb6snNRiLeEtowV9WpWOoaUorFiHd0k45WAQOwiFSVScR1psc_2HTdqMsOtvMmwgBd7IFPJwEbptUt_HWMtJmy38Mnstm40V_-fKPrFm5vRzVzhUja_bytk_CEow6wV38968bn99PXs7XkvlvgPTJrGFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429546577</pqid></control><display><type>article</type><title>Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Thomas, R. Quinn ; Zaehle, Sönke ; Templer, Pamela H. ; Goodale, Christine L.</creator><creatorcontrib>Thomas, R. Quinn ; Zaehle, Sönke ; Templer, Pamela H. ; Goodale, Christine L.</creatorcontrib><description>Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C‐N interactions of current models compare to field observations, identify the processes causing model divergence, and identify future observation and experiment needs. We used a set of N‐fertilization simulations from two global biogeochemical models (CLM‐CN and O‐CN) that use different approaches to modeling C‐N interactions. On the global scale, net primary productivity (NPP) in the CLM‐CN model was substantially more responsive to N fertilization than in the O‐CN model. The most striking difference between the two models occurred for humid tropical forests, where the CLM‐CN simulated a 62% increase in NPP at high N addition levels (30 g N m−2 yr−1), while the O‐CN predicted a 2% decrease in NPP due to N fertilization increasing plant respiration more than photosynthesis. Across 35 temperate and boreal forest sites with field N‐fertilization experiments, we show that the CLM‐CN simulated a 46% increase in aboveground NPP in response to N, which exceeded the observed increase of 25%. In contrast, the O‐CN only simulated a 6% increase in aboveground NPP at the N‐fertilization sites. Despite the small response of NPP to N fertilization, the O‐CN model accurately simulated ecosystem retention of N and the fate of added N to vegetation when compared to empirical 15N tracer application studies. In contrast, the CLM‐CN predicted lower total ecosystem N retention and partitioned more losses to volatilization than estimated from observed N budgets of small catchments. These results point to the need for model improvements in both models in order to enhance the accuracy with which global C‐N cycle feedbacks are simulated.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12281</identifier><identifier>PMID: 23744637</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Ammonium Compounds ; Animal and plant ecology ; Animal, plant and microbial ecology ; Biogeochemistry ; Biological and medical sciences ; Carbon Cycle ; carbon cycling ; Fertilizers ; Fundamental and applied biological sciences. Psychology ; General aspects ; Models, Theoretical ; Nitrates ; Nitrogen ; Nitrogen Cycle ; nitrogen cycling ; nitrogen limitation ; Synecology ; terrestrial biogeochemistry - climate feedbacks ; Trees ; Vegetation</subject><ispartof>Global change biology, 2013-10, Vol.19 (10), p.2986-2998</ispartof><rights>2013 John Wiley & Sons Ltd</rights><rights>2014 INIST-CNRS</rights><rights>2013 John Wiley & Sons Ltd.</rights><rights>Copyright © 2013 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4871-8df7bc92bb3fe63d93bcd606a1c90a3c4af069cb7f2997c2709367989d5047f43</citedby><cites>FETCH-LOGICAL-c4871-8df7bc92bb3fe63d93bcd606a1c90a3c4af069cb7f2997c2709367989d5047f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.12281$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.12281$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27753472$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23744637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, R. Quinn</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Templer, Pamela H.</creatorcontrib><creatorcontrib>Goodale, Christine L.</creatorcontrib><title>Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C‐N interactions of current models compare to field observations, identify the processes causing model divergence, and identify future observation and experiment needs. We used a set of N‐fertilization simulations from two global biogeochemical models (CLM‐CN and O‐CN) that use different approaches to modeling C‐N interactions. On the global scale, net primary productivity (NPP) in the CLM‐CN model was substantially more responsive to N fertilization than in the O‐CN model. The most striking difference between the two models occurred for humid tropical forests, where the CLM‐CN simulated a 62% increase in NPP at high N addition levels (30 g N m−2 yr−1), while the O‐CN predicted a 2% decrease in NPP due to N fertilization increasing plant respiration more than photosynthesis. Across 35 temperate and boreal forest sites with field N‐fertilization experiments, we show that the CLM‐CN simulated a 46% increase in aboveground NPP in response to N, which exceeded the observed increase of 25%. In contrast, the O‐CN only simulated a 6% increase in aboveground NPP at the N‐fertilization sites. Despite the small response of NPP to N fertilization, the O‐CN model accurately simulated ecosystem retention of N and the fate of added N to vegetation when compared to empirical 15N tracer application studies. In contrast, the CLM‐CN predicted lower total ecosystem N retention and partitioned more losses to volatilization than estimated from observed N budgets of small catchments. These results point to the need for model improvements in both models in order to enhance the accuracy with which global C‐N cycle feedbacks are simulated.</description><subject>Ammonium Compounds</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biogeochemistry</subject><subject>Biological and medical sciences</subject><subject>Carbon Cycle</subject><subject>carbon cycling</subject><subject>Fertilizers</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Models, Theoretical</subject><subject>Nitrates</subject><subject>Nitrogen</subject><subject>Nitrogen Cycle</subject><subject>nitrogen cycling</subject><subject>nitrogen limitation</subject><subject>Synecology</subject><subject>terrestrial biogeochemistry - climate feedbacks</subject><subject>Trees</subject><subject>Vegetation</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V1rFDEUBuBBFFurF_4BGRBBL6bN1yST3umq48dSQSpehiSTbFNnkjXJuvbfm-1sKwhCc5MEnnMOh7eqnkJwDMs5WWl1DBHq4L3qEGLaNoh09P7u3ZIGAogPqkcpXQIAMAL0YXWAMCOEYnZY2X4MSo71WuZsok91sLV3OYaV8fXoJpdldsGf1jp4G4PPzq_qvA31aq5TrsigL8zkdPlOYTBjqrcuX9RBJRN_XZenx9UDK8dknuzvo-rb-3fniw_N8kv_cfF62WjSMdh0g2VKc6QUtobigWOlBwqohJoDiTWRFlCuFbOIc6YRAxxTxjs-tIAwS_BR9XLuu47h58akLCaXtBlH6U3YJAEJ5giX3dHdKGQEwbtQgDnlfEef_0Mvwyb6snNRiLeEtowV9WpWOoaUorFiHd0k45WAQOwiFSVScR1psc_2HTdqMsOtvMmwgBd7IFPJwEbptUt_HWMtJmy38Mnstm40V_-fKPrFm5vRzVzhUja_bytk_CEow6wV38968bn99PXs7XkvlvgPTJrGFQ</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Thomas, R. Quinn</creator><creator>Zaehle, Sönke</creator><creator>Templer, Pamela H.</creator><creator>Goodale, Christine L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>201310</creationdate><title>Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations</title><author>Thomas, R. Quinn ; Zaehle, Sönke ; Templer, Pamela H. ; Goodale, Christine L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4871-8df7bc92bb3fe63d93bcd606a1c90a3c4af069cb7f2997c2709367989d5047f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ammonium Compounds</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biogeochemistry</topic><topic>Biological and medical sciences</topic><topic>Carbon Cycle</topic><topic>carbon cycling</topic><topic>Fertilizers</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Models, Theoretical</topic><topic>Nitrates</topic><topic>Nitrogen</topic><topic>Nitrogen Cycle</topic><topic>nitrogen cycling</topic><topic>nitrogen limitation</topic><topic>Synecology</topic><topic>terrestrial biogeochemistry - climate feedbacks</topic><topic>Trees</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, R. Quinn</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Templer, Pamela H.</creatorcontrib><creatorcontrib>Goodale, Christine L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, R. Quinn</au><au>Zaehle, Sönke</au><au>Templer, Pamela H.</au><au>Goodale, Christine L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2013-10</date><risdate>2013</risdate><volume>19</volume><issue>10</issue><spage>2986</spage><epage>2998</epage><pages>2986-2998</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C‐N interactions of current models compare to field observations, identify the processes causing model divergence, and identify future observation and experiment needs. We used a set of N‐fertilization simulations from two global biogeochemical models (CLM‐CN and O‐CN) that use different approaches to modeling C‐N interactions. On the global scale, net primary productivity (NPP) in the CLM‐CN model was substantially more responsive to N fertilization than in the O‐CN model. The most striking difference between the two models occurred for humid tropical forests, where the CLM‐CN simulated a 62% increase in NPP at high N addition levels (30 g N m−2 yr−1), while the O‐CN predicted a 2% decrease in NPP due to N fertilization increasing plant respiration more than photosynthesis. Across 35 temperate and boreal forest sites with field N‐fertilization experiments, we show that the CLM‐CN simulated a 46% increase in aboveground NPP in response to N, which exceeded the observed increase of 25%. In contrast, the O‐CN only simulated a 6% increase in aboveground NPP at the N‐fertilization sites. Despite the small response of NPP to N fertilization, the O‐CN model accurately simulated ecosystem retention of N and the fate of added N to vegetation when compared to empirical 15N tracer application studies. In contrast, the CLM‐CN predicted lower total ecosystem N retention and partitioned more losses to volatilization than estimated from observed N budgets of small catchments. These results point to the need for model improvements in both models in order to enhance the accuracy with which global C‐N cycle feedbacks are simulated.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23744637</pmid><doi>10.1111/gcb.12281</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2013-10, Vol.19 (10), p.2986-2998 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439234462 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Ammonium Compounds Animal and plant ecology Animal, plant and microbial ecology Biogeochemistry Biological and medical sciences Carbon Cycle carbon cycling Fertilizers Fundamental and applied biological sciences. Psychology General aspects Models, Theoretical Nitrates Nitrogen Nitrogen Cycle nitrogen cycling nitrogen limitation Synecology terrestrial biogeochemistry - climate feedbacks Trees Vegetation |
title | Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20patterns%20of%20nitrogen%20limitation:%20confronting%20two%20global%20biogeochemical%20models%20with%20observations&rft.jtitle=Global%20change%20biology&rft.au=Thomas,%20R.%20Quinn&rft.date=2013-10&rft.volume=19&rft.issue=10&rft.spage=2986&rft.epage=2998&rft.pages=2986-2998&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12281&rft_dat=%3Cproquest_cross%3E3061544881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429546577&rft_id=info:pmid/23744637&rfr_iscdi=true |