Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations

Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C‐N interactions of curren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2013-10, Vol.19 (10), p.2986-2998
Hauptverfasser: Thomas, R. Quinn, Zaehle, Sönke, Templer, Pamela H., Goodale, Christine L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2998
container_issue 10
container_start_page 2986
container_title Global change biology
container_volume 19
creator Thomas, R. Quinn
Zaehle, Sönke
Templer, Pamela H.
Goodale, Christine L.
description Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C‐N interactions of current models compare to field observations, identify the processes causing model divergence, and identify future observation and experiment needs. We used a set of N‐fertilization simulations from two global biogeochemical models (CLM‐CN and O‐CN) that use different approaches to modeling C‐N interactions. On the global scale, net primary productivity (NPP) in the CLM‐CN model was substantially more responsive to N fertilization than in the O‐CN model. The most striking difference between the two models occurred for humid tropical forests, where the CLM‐CN simulated a 62% increase in NPP at high N addition levels (30 g N m−2 yr−1), while the O‐CN predicted a 2% decrease in NPP due to N fertilization increasing plant respiration more than photosynthesis. Across 35 temperate and boreal forest sites with field N‐fertilization experiments, we show that the CLM‐CN simulated a 46% increase in aboveground NPP in response to N, which exceeded the observed increase of 25%. In contrast, the O‐CN only simulated a 6% increase in aboveground NPP at the N‐fertilization sites. Despite the small response of NPP to N fertilization, the O‐CN model accurately simulated ecosystem retention of N and the fate of added N to vegetation when compared to empirical 15N tracer application studies. In contrast, the CLM‐CN predicted lower total ecosystem N retention and partitioned more losses to volatilization than estimated from observed N budgets of small catchments. These results point to the need for model improvements in both models in order to enhance the accuracy with which global C‐N cycle feedbacks are simulated.
doi_str_mv 10.1111/gcb.12281
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439234462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061544881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4871-8df7bc92bb3fe63d93bcd606a1c90a3c4af069cb7f2997c2709367989d5047f43</originalsourceid><addsrcrecordid>eNqN0V1rFDEUBuBBFFurF_4BGRBBL6bN1yST3umq48dSQSpehiSTbFNnkjXJuvbfm-1sKwhCc5MEnnMOh7eqnkJwDMs5WWl1DBHq4L3qEGLaNoh09P7u3ZIGAogPqkcpXQIAMAL0YXWAMCOEYnZY2X4MSo71WuZsok91sLV3OYaV8fXoJpdldsGf1jp4G4PPzq_qvA31aq5TrsigL8zkdPlOYTBjqrcuX9RBJRN_XZenx9UDK8dknuzvo-rb-3fniw_N8kv_cfF62WjSMdh0g2VKc6QUtobigWOlBwqohJoDiTWRFlCuFbOIc6YRAxxTxjs-tIAwS_BR9XLuu47h58akLCaXtBlH6U3YJAEJ5giX3dHdKGQEwbtQgDnlfEef_0Mvwyb6snNRiLeEtowV9WpWOoaUorFiHd0k45WAQOwiFSVScR1psc_2HTdqMsOtvMmwgBd7IFPJwEbptUt_HWMtJmy38Mnstm40V_-fKPrFm5vRzVzhUja_bytk_CEow6wV38968bn99PXs7XkvlvgPTJrGFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429546577</pqid></control><display><type>article</type><title>Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Thomas, R. Quinn ; Zaehle, Sönke ; Templer, Pamela H. ; Goodale, Christine L.</creator><creatorcontrib>Thomas, R. Quinn ; Zaehle, Sönke ; Templer, Pamela H. ; Goodale, Christine L.</creatorcontrib><description>Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C‐N interactions of current models compare to field observations, identify the processes causing model divergence, and identify future observation and experiment needs. We used a set of N‐fertilization simulations from two global biogeochemical models (CLM‐CN and O‐CN) that use different approaches to modeling C‐N interactions. On the global scale, net primary productivity (NPP) in the CLM‐CN model was substantially more responsive to N fertilization than in the O‐CN model. The most striking difference between the two models occurred for humid tropical forests, where the CLM‐CN simulated a 62% increase in NPP at high N addition levels (30 g N m−2 yr−1), while the O‐CN predicted a 2% decrease in NPP due to N fertilization increasing plant respiration more than photosynthesis. Across 35 temperate and boreal forest sites with field N‐fertilization experiments, we show that the CLM‐CN simulated a 46% increase in aboveground NPP in response to N, which exceeded the observed increase of 25%. In contrast, the O‐CN only simulated a 6% increase in aboveground NPP at the N‐fertilization sites. Despite the small response of NPP to N fertilization, the O‐CN model accurately simulated ecosystem retention of N and the fate of added N to vegetation when compared to empirical 15N tracer application studies. In contrast, the CLM‐CN predicted lower total ecosystem N retention and partitioned more losses to volatilization than estimated from observed N budgets of small catchments. These results point to the need for model improvements in both models in order to enhance the accuracy with which global C‐N cycle feedbacks are simulated.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12281</identifier><identifier>PMID: 23744637</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Ammonium Compounds ; Animal and plant ecology ; Animal, plant and microbial ecology ; Biogeochemistry ; Biological and medical sciences ; Carbon Cycle ; carbon cycling ; Fertilizers ; Fundamental and applied biological sciences. Psychology ; General aspects ; Models, Theoretical ; Nitrates ; Nitrogen ; Nitrogen Cycle ; nitrogen cycling ; nitrogen limitation ; Synecology ; terrestrial biogeochemistry - climate feedbacks ; Trees ; Vegetation</subject><ispartof>Global change biology, 2013-10, Vol.19 (10), p.2986-2998</ispartof><rights>2013 John Wiley &amp; Sons Ltd</rights><rights>2014 INIST-CNRS</rights><rights>2013 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2013 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4871-8df7bc92bb3fe63d93bcd606a1c90a3c4af069cb7f2997c2709367989d5047f43</citedby><cites>FETCH-LOGICAL-c4871-8df7bc92bb3fe63d93bcd606a1c90a3c4af069cb7f2997c2709367989d5047f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.12281$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.12281$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27753472$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23744637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, R. Quinn</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Templer, Pamela H.</creatorcontrib><creatorcontrib>Goodale, Christine L.</creatorcontrib><title>Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C‐N interactions of current models compare to field observations, identify the processes causing model divergence, and identify future observation and experiment needs. We used a set of N‐fertilization simulations from two global biogeochemical models (CLM‐CN and O‐CN) that use different approaches to modeling C‐N interactions. On the global scale, net primary productivity (NPP) in the CLM‐CN model was substantially more responsive to N fertilization than in the O‐CN model. The most striking difference between the two models occurred for humid tropical forests, where the CLM‐CN simulated a 62% increase in NPP at high N addition levels (30 g N m−2 yr−1), while the O‐CN predicted a 2% decrease in NPP due to N fertilization increasing plant respiration more than photosynthesis. Across 35 temperate and boreal forest sites with field N‐fertilization experiments, we show that the CLM‐CN simulated a 46% increase in aboveground NPP in response to N, which exceeded the observed increase of 25%. In contrast, the O‐CN only simulated a 6% increase in aboveground NPP at the N‐fertilization sites. Despite the small response of NPP to N fertilization, the O‐CN model accurately simulated ecosystem retention of N and the fate of added N to vegetation when compared to empirical 15N tracer application studies. In contrast, the CLM‐CN predicted lower total ecosystem N retention and partitioned more losses to volatilization than estimated from observed N budgets of small catchments. These results point to the need for model improvements in both models in order to enhance the accuracy with which global C‐N cycle feedbacks are simulated.</description><subject>Ammonium Compounds</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biogeochemistry</subject><subject>Biological and medical sciences</subject><subject>Carbon Cycle</subject><subject>carbon cycling</subject><subject>Fertilizers</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Models, Theoretical</subject><subject>Nitrates</subject><subject>Nitrogen</subject><subject>Nitrogen Cycle</subject><subject>nitrogen cycling</subject><subject>nitrogen limitation</subject><subject>Synecology</subject><subject>terrestrial biogeochemistry - climate feedbacks</subject><subject>Trees</subject><subject>Vegetation</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V1rFDEUBuBBFFurF_4BGRBBL6bN1yST3umq48dSQSpehiSTbFNnkjXJuvbfm-1sKwhCc5MEnnMOh7eqnkJwDMs5WWl1DBHq4L3qEGLaNoh09P7u3ZIGAogPqkcpXQIAMAL0YXWAMCOEYnZY2X4MSo71WuZsok91sLV3OYaV8fXoJpdldsGf1jp4G4PPzq_qvA31aq5TrsigL8zkdPlOYTBjqrcuX9RBJRN_XZenx9UDK8dknuzvo-rb-3fniw_N8kv_cfF62WjSMdh0g2VKc6QUtobigWOlBwqohJoDiTWRFlCuFbOIc6YRAxxTxjs-tIAwS_BR9XLuu47h58akLCaXtBlH6U3YJAEJ5giX3dHdKGQEwbtQgDnlfEef_0Mvwyb6snNRiLeEtowV9WpWOoaUorFiHd0k45WAQOwiFSVScR1psc_2HTdqMsOtvMmwgBd7IFPJwEbptUt_HWMtJmy38Mnstm40V_-fKPrFm5vRzVzhUja_bytk_CEow6wV38968bn99PXs7XkvlvgPTJrGFQ</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Thomas, R. Quinn</creator><creator>Zaehle, Sönke</creator><creator>Templer, Pamela H.</creator><creator>Goodale, Christine L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>201310</creationdate><title>Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations</title><author>Thomas, R. Quinn ; Zaehle, Sönke ; Templer, Pamela H. ; Goodale, Christine L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4871-8df7bc92bb3fe63d93bcd606a1c90a3c4af069cb7f2997c2709367989d5047f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ammonium Compounds</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biogeochemistry</topic><topic>Biological and medical sciences</topic><topic>Carbon Cycle</topic><topic>carbon cycling</topic><topic>Fertilizers</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Models, Theoretical</topic><topic>Nitrates</topic><topic>Nitrogen</topic><topic>Nitrogen Cycle</topic><topic>nitrogen cycling</topic><topic>nitrogen limitation</topic><topic>Synecology</topic><topic>terrestrial biogeochemistry - climate feedbacks</topic><topic>Trees</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, R. Quinn</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Templer, Pamela H.</creatorcontrib><creatorcontrib>Goodale, Christine L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, R. Quinn</au><au>Zaehle, Sönke</au><au>Templer, Pamela H.</au><au>Goodale, Christine L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2013-10</date><risdate>2013</risdate><volume>19</volume><issue>10</issue><spage>2986</spage><epage>2998</epage><pages>2986-2998</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C‐N interactions of current models compare to field observations, identify the processes causing model divergence, and identify future observation and experiment needs. We used a set of N‐fertilization simulations from two global biogeochemical models (CLM‐CN and O‐CN) that use different approaches to modeling C‐N interactions. On the global scale, net primary productivity (NPP) in the CLM‐CN model was substantially more responsive to N fertilization than in the O‐CN model. The most striking difference between the two models occurred for humid tropical forests, where the CLM‐CN simulated a 62% increase in NPP at high N addition levels (30 g N m−2 yr−1), while the O‐CN predicted a 2% decrease in NPP due to N fertilization increasing plant respiration more than photosynthesis. Across 35 temperate and boreal forest sites with field N‐fertilization experiments, we show that the CLM‐CN simulated a 46% increase in aboveground NPP in response to N, which exceeded the observed increase of 25%. In contrast, the O‐CN only simulated a 6% increase in aboveground NPP at the N‐fertilization sites. Despite the small response of NPP to N fertilization, the O‐CN model accurately simulated ecosystem retention of N and the fate of added N to vegetation when compared to empirical 15N tracer application studies. In contrast, the CLM‐CN predicted lower total ecosystem N retention and partitioned more losses to volatilization than estimated from observed N budgets of small catchments. These results point to the need for model improvements in both models in order to enhance the accuracy with which global C‐N cycle feedbacks are simulated.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23744637</pmid><doi>10.1111/gcb.12281</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2013-10, Vol.19 (10), p.2986-2998
issn 1354-1013
1365-2486
language eng
recordid cdi_proquest_miscellaneous_1439234462
source MEDLINE; Wiley Online Library All Journals
subjects Ammonium Compounds
Animal and plant ecology
Animal, plant and microbial ecology
Biogeochemistry
Biological and medical sciences
Carbon Cycle
carbon cycling
Fertilizers
Fundamental and applied biological sciences. Psychology
General aspects
Models, Theoretical
Nitrates
Nitrogen
Nitrogen Cycle
nitrogen cycling
nitrogen limitation
Synecology
terrestrial biogeochemistry - climate feedbacks
Trees
Vegetation
title Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20patterns%20of%20nitrogen%20limitation:%20confronting%20two%20global%20biogeochemical%20models%20with%20observations&rft.jtitle=Global%20change%20biology&rft.au=Thomas,%20R.%20Quinn&rft.date=2013-10&rft.volume=19&rft.issue=10&rft.spage=2986&rft.epage=2998&rft.pages=2986-2998&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12281&rft_dat=%3Cproquest_cross%3E3061544881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429546577&rft_id=info:pmid/23744637&rfr_iscdi=true