Evolution of the biochemistry of the photorespiratory C 2 cycle

Oxygenic photosynthesis would not be possible without photorespiration in the present day O 2 ‐rich atmosphere. It is now generally accepted that cyanobacteria‐like prokaryotes first evolved oxygenic photosynthesis, which was later conveyed via endosymbiosis into a eukaryotic host, which then gave r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biology (Stuttgart, Germany) Germany), 2013-07, Vol.15 (4), p.639-647
Hauptverfasser: Hagemann, M., Fernie, A. R., Espie, G. S., Kern, R., Eisenhut, M., Reumann, S., Bauwe, H., Weber, A. P. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 647
container_issue 4
container_start_page 639
container_title Plant biology (Stuttgart, Germany)
container_volume 15
creator Hagemann, M.
Fernie, A. R.
Espie, G. S.
Kern, R.
Eisenhut, M.
Reumann, S.
Bauwe, H.
Weber, A. P. M.
description Oxygenic photosynthesis would not be possible without photorespiration in the present day O 2 ‐rich atmosphere. It is now generally accepted that cyanobacteria‐like prokaryotes first evolved oxygenic photosynthesis, which was later conveyed via endosymbiosis into a eukaryotic host, which then gave rise to the different groups of algae and streptophytes. For photosynthetic CO 2 fixation, all these organisms use Rubis CO , which catalyses both the carboxylation and the oxygenation of ribulose 1,5‐bisphosphate. One of the reaction products of the oxygenase reaction, 2‐phosphoglycolate (2 PG ), represents the starting point of the photorespiratory C 2 cycle, which is considered largely responsible for recapturing organic carbon via conversion to the Calvin–Benson cycle ( CBC ) intermediate 3‐phosphoglycerate, thereby detoxifying critical intermediates. Here we discuss possible scenarios for the evolution of this process toward the well‐defined 2 PG metabolism in extant plants. While the origin of the C 2 cycle core enzymes can be clearly dated back towards the different endosymbiotic events, the evolutionary scenario that allowed the compartmentalised high flux photorespiratory cycle is uncertain, but probably occurred early during the algal radiation. The change in atmospheric CO 2 / O 2 ratios promoting the acquisition of different modes for inorganic carbon concentration mechanisms, as well as the evolutionary specialisation of peroxisomes, clearly had a dramatic impact on further aspects of land plant photorespiration.
doi_str_mv 10.1111/j.1438-8677.2012.00677.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439227508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439227508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1378-900d268271e0c1d62f78336572e1121825c60f24da53aa2e962381e802c9a69b3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwH3Lk0mI7a5KeEJrGhzSJC5yjLEu1Tt1Skg6t_552A3zxo-SVZT-McYQch3rY5jgTOtNSqZwAKQcY8XjBJv8flycuBgZxzW5S2gLgrAScsMfFd2gOXR32PFS823i-qoPb-F2dutj_vbWb0IXoU1tHO0DP55y4613jb9lVZZvk7377lH0-Lz7mr9ny_eVt_rTMHAqlsxJgTVKTQg8O15IqpYWQhSKPSKipcBIqmq1tIawlX0oSGr0GcqWV5UpM2f15bhvD18GnzgwbOt80du_DIZnhvpJIFaCHqD5HXQwpRV-ZNtY7G3uDYEZnZjvGtRnVmNGZOTkzR_EDenVeVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439227508</pqid></control><display><type>article</type><title>Evolution of the biochemistry of the photorespiratory C 2 cycle</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hagemann, M. ; Fernie, A. R. ; Espie, G. S. ; Kern, R. ; Eisenhut, M. ; Reumann, S. ; Bauwe, H. ; Weber, A. P. M.</creator><creatorcontrib>Hagemann, M. ; Fernie, A. R. ; Espie, G. S. ; Kern, R. ; Eisenhut, M. ; Reumann, S. ; Bauwe, H. ; Weber, A. P. M.</creatorcontrib><description>Oxygenic photosynthesis would not be possible without photorespiration in the present day O 2 ‐rich atmosphere. It is now generally accepted that cyanobacteria‐like prokaryotes first evolved oxygenic photosynthesis, which was later conveyed via endosymbiosis into a eukaryotic host, which then gave rise to the different groups of algae and streptophytes. For photosynthetic CO 2 fixation, all these organisms use Rubis CO , which catalyses both the carboxylation and the oxygenation of ribulose 1,5‐bisphosphate. One of the reaction products of the oxygenase reaction, 2‐phosphoglycolate (2 PG ), represents the starting point of the photorespiratory C 2 cycle, which is considered largely responsible for recapturing organic carbon via conversion to the Calvin–Benson cycle ( CBC ) intermediate 3‐phosphoglycerate, thereby detoxifying critical intermediates. Here we discuss possible scenarios for the evolution of this process toward the well‐defined 2 PG metabolism in extant plants. While the origin of the C 2 cycle core enzymes can be clearly dated back towards the different endosymbiotic events, the evolutionary scenario that allowed the compartmentalised high flux photorespiratory cycle is uncertain, but probably occurred early during the algal radiation. The change in atmospheric CO 2 / O 2 ratios promoting the acquisition of different modes for inorganic carbon concentration mechanisms, as well as the evolutionary specialisation of peroxisomes, clearly had a dramatic impact on further aspects of land plant photorespiration.</description><identifier>ISSN: 1435-8603</identifier><identifier>EISSN: 1438-8677</identifier><identifier>DOI: 10.1111/j.1438-8677.2012.00677.x</identifier><language>eng</language><ispartof>Plant biology (Stuttgart, Germany), 2013-07, Vol.15 (4), p.639-647</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1378-900d268271e0c1d62f78336572e1121825c60f24da53aa2e962381e802c9a69b3</citedby><cites>FETCH-LOGICAL-c1378-900d268271e0c1d62f78336572e1121825c60f24da53aa2e962381e802c9a69b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hagemann, M.</creatorcontrib><creatorcontrib>Fernie, A. R.</creatorcontrib><creatorcontrib>Espie, G. S.</creatorcontrib><creatorcontrib>Kern, R.</creatorcontrib><creatorcontrib>Eisenhut, M.</creatorcontrib><creatorcontrib>Reumann, S.</creatorcontrib><creatorcontrib>Bauwe, H.</creatorcontrib><creatorcontrib>Weber, A. P. M.</creatorcontrib><title>Evolution of the biochemistry of the photorespiratory C 2 cycle</title><title>Plant biology (Stuttgart, Germany)</title><description>Oxygenic photosynthesis would not be possible without photorespiration in the present day O 2 ‐rich atmosphere. It is now generally accepted that cyanobacteria‐like prokaryotes first evolved oxygenic photosynthesis, which was later conveyed via endosymbiosis into a eukaryotic host, which then gave rise to the different groups of algae and streptophytes. For photosynthetic CO 2 fixation, all these organisms use Rubis CO , which catalyses both the carboxylation and the oxygenation of ribulose 1,5‐bisphosphate. One of the reaction products of the oxygenase reaction, 2‐phosphoglycolate (2 PG ), represents the starting point of the photorespiratory C 2 cycle, which is considered largely responsible for recapturing organic carbon via conversion to the Calvin–Benson cycle ( CBC ) intermediate 3‐phosphoglycerate, thereby detoxifying critical intermediates. Here we discuss possible scenarios for the evolution of this process toward the well‐defined 2 PG metabolism in extant plants. While the origin of the C 2 cycle core enzymes can be clearly dated back towards the different endosymbiotic events, the evolutionary scenario that allowed the compartmentalised high flux photorespiratory cycle is uncertain, but probably occurred early during the algal radiation. The change in atmospheric CO 2 / O 2 ratios promoting the acquisition of different modes for inorganic carbon concentration mechanisms, as well as the evolutionary specialisation of peroxisomes, clearly had a dramatic impact on further aspects of land plant photorespiration.</description><issn>1435-8603</issn><issn>1438-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEEmPwH3Lk0mI7a5KeEJrGhzSJC5yjLEu1Tt1Skg6t_552A3zxo-SVZT-McYQch3rY5jgTOtNSqZwAKQcY8XjBJv8flycuBgZxzW5S2gLgrAScsMfFd2gOXR32PFS823i-qoPb-F2dutj_vbWb0IXoU1tHO0DP55y4613jb9lVZZvk7377lH0-Lz7mr9ny_eVt_rTMHAqlsxJgTVKTQg8O15IqpYWQhSKPSKipcBIqmq1tIawlX0oSGr0GcqWV5UpM2f15bhvD18GnzgwbOt80du_DIZnhvpJIFaCHqD5HXQwpRV-ZNtY7G3uDYEZnZjvGtRnVmNGZOTkzR_EDenVeVw</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Hagemann, M.</creator><creator>Fernie, A. R.</creator><creator>Espie, G. S.</creator><creator>Kern, R.</creator><creator>Eisenhut, M.</creator><creator>Reumann, S.</creator><creator>Bauwe, H.</creator><creator>Weber, A. P. M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope></search><sort><creationdate>201307</creationdate><title>Evolution of the biochemistry of the photorespiratory C 2 cycle</title><author>Hagemann, M. ; Fernie, A. R. ; Espie, G. S. ; Kern, R. ; Eisenhut, M. ; Reumann, S. ; Bauwe, H. ; Weber, A. P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1378-900d268271e0c1d62f78336572e1121825c60f24da53aa2e962381e802c9a69b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagemann, M.</creatorcontrib><creatorcontrib>Fernie, A. R.</creatorcontrib><creatorcontrib>Espie, G. S.</creatorcontrib><creatorcontrib>Kern, R.</creatorcontrib><creatorcontrib>Eisenhut, M.</creatorcontrib><creatorcontrib>Reumann, S.</creatorcontrib><creatorcontrib>Bauwe, H.</creatorcontrib><creatorcontrib>Weber, A. P. M.</creatorcontrib><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Plant biology (Stuttgart, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagemann, M.</au><au>Fernie, A. R.</au><au>Espie, G. S.</au><au>Kern, R.</au><au>Eisenhut, M.</au><au>Reumann, S.</au><au>Bauwe, H.</au><au>Weber, A. P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the biochemistry of the photorespiratory C 2 cycle</atitle><jtitle>Plant biology (Stuttgart, Germany)</jtitle><date>2013-07</date><risdate>2013</risdate><volume>15</volume><issue>4</issue><spage>639</spage><epage>647</epage><pages>639-647</pages><issn>1435-8603</issn><eissn>1438-8677</eissn><abstract>Oxygenic photosynthesis would not be possible without photorespiration in the present day O 2 ‐rich atmosphere. It is now generally accepted that cyanobacteria‐like prokaryotes first evolved oxygenic photosynthesis, which was later conveyed via endosymbiosis into a eukaryotic host, which then gave rise to the different groups of algae and streptophytes. For photosynthetic CO 2 fixation, all these organisms use Rubis CO , which catalyses both the carboxylation and the oxygenation of ribulose 1,5‐bisphosphate. One of the reaction products of the oxygenase reaction, 2‐phosphoglycolate (2 PG ), represents the starting point of the photorespiratory C 2 cycle, which is considered largely responsible for recapturing organic carbon via conversion to the Calvin–Benson cycle ( CBC ) intermediate 3‐phosphoglycerate, thereby detoxifying critical intermediates. Here we discuss possible scenarios for the evolution of this process toward the well‐defined 2 PG metabolism in extant plants. While the origin of the C 2 cycle core enzymes can be clearly dated back towards the different endosymbiotic events, the evolutionary scenario that allowed the compartmentalised high flux photorespiratory cycle is uncertain, but probably occurred early during the algal radiation. The change in atmospheric CO 2 / O 2 ratios promoting the acquisition of different modes for inorganic carbon concentration mechanisms, as well as the evolutionary specialisation of peroxisomes, clearly had a dramatic impact on further aspects of land plant photorespiration.</abstract><doi>10.1111/j.1438-8677.2012.00677.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1435-8603
ispartof Plant biology (Stuttgart, Germany), 2013-07, Vol.15 (4), p.639-647
issn 1435-8603
1438-8677
language eng
recordid cdi_proquest_miscellaneous_1439227508
source Wiley Online Library Journals Frontfile Complete
title Evolution of the biochemistry of the photorespiratory C 2 cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20biochemistry%20of%20the%20photorespiratory%20C%202%20cycle&rft.jtitle=Plant%20biology%20(Stuttgart,%20Germany)&rft.au=Hagemann,%20M.&rft.date=2013-07&rft.volume=15&rft.issue=4&rft.spage=639&rft.epage=647&rft.pages=639-647&rft.issn=1435-8603&rft.eissn=1438-8677&rft_id=info:doi/10.1111/j.1438-8677.2012.00677.x&rft_dat=%3Cproquest_cross%3E1439227508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439227508&rft_id=info:pmid/&rfr_iscdi=true