The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS

Recent studies suggest that a complex, distributed neural network underpins semantic cognition. This article reviews our contribution to this emerging picture and traces the putative roles of each region within this network. Neuropsychological studies indicate that semantic cognition draws on at lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cortex 2013-03, Vol.49 (3), p.611-625
1. Verfasser: Jefferies, Elizabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 625
container_issue 3
container_start_page 611
container_title Cortex
container_volume 49
creator Jefferies, Elizabeth
description Recent studies suggest that a complex, distributed neural network underpins semantic cognition. This article reviews our contribution to this emerging picture and traces the putative roles of each region within this network. Neuropsychological studies indicate that semantic cognition draws on at least two interacting components: semantic representations [degraded in semantic dementia (SD)] and control processes [deficient in patients with multimodal semantic impairment following stroke aphasia (SA)]. To explore the first component, we employed distortion-corrected functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) in healthy volunteers: these studies convergently indicated that the anterior temporal lobes (ATLs; atrophied in SD) combine information from different modalities within an amodal semantic “hub”. Regions of cortex that code specific semantic features (“spokes”) also make a critical contribution to knowledge within particular categories. This network of brain regions interacts with semantic control processes reliant on left inferior frontal gyrus (LIFG), posterior middle temporal gyrus (pMTG) and inferior parietal cortices. SA patients with damage to these regions have difficulty focussing on aspects of knowledge that are relevant to the current goal or context, in both verbal and non-verbal tasks. SA patients with LIFG and temporoparietal lesions show similar deficits of semantic control, suggesting that a large-scale distributed cortical network underpins semantic control. Convergent evidence is again provided by fMRI and TMS. We separately manipulated the representational and control demands of a semantic task in fMRI, and found a dissociation within the temporal lobe: ATL was sensitive to the number of meanings retrieved, while pMTG and LIFG showed effects of semantic selection. Moreover, TMS to LIFG and pMTG produced equal disruption of tasks tapping semantic control. The next challenges are to delineate the specific roles of each region within the semantic control network and to specify the way in which control processes interact with semantic representations to focus processing on relevant features of concepts.
doi_str_mv 10.1016/j.cortex.2012.10.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1438639494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010945212003103</els_id><sourcerecordid>1438639494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-ade302ce46d8515ed583573ebee37d49f7656ac6af4497be347c5074896e792f3</originalsourceid><addsrcrecordid>eNqNkU2rEzEYhYMo3nr1H4hkI7hwar6TcSFI8QuuuLCuQ5p5pzdlJqnJtNh_b3qn6k5dBQ7PScJ5EHpKyZISql7tlj7lCX4sGaGsRktCzD20oK3mjaGE3UcLQihpWiHZFXpUyo4QRoyUD9EV40wRReUC9etbwBEO2Q1440ooOPW4wOjiFDz2aRvDFFJ8jVcpHiFvQ9xiOIYOogfc5zTeldO-nPxtGtL29HIOwujuWBc7vP789TF60LuhwJPLeY2-vX-3Xn1sbr58-LR6e9N4ycTUuA44YR6E6oykEjppuNQcNgBcd6LttZLKeeV6IVq9AS60l0QL0yrQLev5NXox37vP6fsBymTHUDwMg4uQDsVSwY3irWjFv1HOuKnbcv0fKNVGEkNVRcWM-pxKydDbfa5b5JOlxJ692Z2dvdmzt3NavdXas8sLh80I3e_SL1EVeH4BXPFu6LOLPpQ_XN3AKEor92bmoK58DJBt8eEsqwsZ_GS7FP7-k58sHLfN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317850816</pqid></control><display><type>article</type><title>The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jefferies, Elizabeth</creator><creatorcontrib>Jefferies, Elizabeth</creatorcontrib><description>Recent studies suggest that a complex, distributed neural network underpins semantic cognition. This article reviews our contribution to this emerging picture and traces the putative roles of each region within this network. Neuropsychological studies indicate that semantic cognition draws on at least two interacting components: semantic representations [degraded in semantic dementia (SD)] and control processes [deficient in patients with multimodal semantic impairment following stroke aphasia (SA)]. To explore the first component, we employed distortion-corrected functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) in healthy volunteers: these studies convergently indicated that the anterior temporal lobes (ATLs; atrophied in SD) combine information from different modalities within an amodal semantic “hub”. Regions of cortex that code specific semantic features (“spokes”) also make a critical contribution to knowledge within particular categories. This network of brain regions interacts with semantic control processes reliant on left inferior frontal gyrus (LIFG), posterior middle temporal gyrus (pMTG) and inferior parietal cortices. SA patients with damage to these regions have difficulty focussing on aspects of knowledge that are relevant to the current goal or context, in both verbal and non-verbal tasks. SA patients with LIFG and temporoparietal lesions show similar deficits of semantic control, suggesting that a large-scale distributed cortical network underpins semantic control. Convergent evidence is again provided by fMRI and TMS. We separately manipulated the representational and control demands of a semantic task in fMRI, and found a dissociation within the temporal lobe: ATL was sensitive to the number of meanings retrieved, while pMTG and LIFG showed effects of semantic selection. Moreover, TMS to LIFG and pMTG produced equal disruption of tasks tapping semantic control. The next challenges are to delineate the specific roles of each region within the semantic control network and to specify the way in which control processes interact with semantic representations to focus processing on relevant features of concepts.</description><identifier>ISSN: 0010-9452</identifier><identifier>EISSN: 1973-8102</identifier><identifier>DOI: 10.1016/j.cortex.2012.10.008</identifier><identifier>PMID: 23260615</identifier><identifier>CODEN: CRTXAZ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adult and adolescent clinical studies ; Anatomical correlates of behavior ; Aphasia ; Behavioral psychophysiology ; Biological and medical sciences ; Brain Mapping ; Cerebral Cortex - physiology ; Cognition ; Cognition - physiology ; Cortex ; Cortex (frontal) ; Cortex (parietal) ; Cortex (temporal) ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Disorders of higher nervous function. Focal brain diseases. Central vestibular syndrome and deafness. Brain stem syndromes ; fMRI ; frontal gyrus ; Functional magnetic resonance imaging ; Fundamental and applied biological sciences. Psychology ; Humans ; Medical sciences ; Nerve Net - physiology ; Nervous system (semeiology, syndromes) ; Neural networks ; Neuroimaging ; Neurology ; Neuropsychology ; Organic mental disorders. Neuropsychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychopathology. Psychiatry ; Reviews ; Semantic cognition ; Semantic dementia ; Stroke ; temporal gyrus ; Temporal lobe ; Transcranial Magnetic Stimulation</subject><ispartof>Cortex, 2013-03, Vol.49 (3), p.611-625</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-ade302ce46d8515ed583573ebee37d49f7656ac6af4497be347c5074896e792f3</citedby><cites>FETCH-LOGICAL-c524t-ade302ce46d8515ed583573ebee37d49f7656ac6af4497be347c5074896e792f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cortex.2012.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27488611$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23260615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jefferies, Elizabeth</creatorcontrib><title>The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS</title><title>Cortex</title><addtitle>Cortex</addtitle><description>Recent studies suggest that a complex, distributed neural network underpins semantic cognition. This article reviews our contribution to this emerging picture and traces the putative roles of each region within this network. Neuropsychological studies indicate that semantic cognition draws on at least two interacting components: semantic representations [degraded in semantic dementia (SD)] and control processes [deficient in patients with multimodal semantic impairment following stroke aphasia (SA)]. To explore the first component, we employed distortion-corrected functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) in healthy volunteers: these studies convergently indicated that the anterior temporal lobes (ATLs; atrophied in SD) combine information from different modalities within an amodal semantic “hub”. Regions of cortex that code specific semantic features (“spokes”) also make a critical contribution to knowledge within particular categories. This network of brain regions interacts with semantic control processes reliant on left inferior frontal gyrus (LIFG), posterior middle temporal gyrus (pMTG) and inferior parietal cortices. SA patients with damage to these regions have difficulty focussing on aspects of knowledge that are relevant to the current goal or context, in both verbal and non-verbal tasks. SA patients with LIFG and temporoparietal lesions show similar deficits of semantic control, suggesting that a large-scale distributed cortical network underpins semantic control. Convergent evidence is again provided by fMRI and TMS. We separately manipulated the representational and control demands of a semantic task in fMRI, and found a dissociation within the temporal lobe: ATL was sensitive to the number of meanings retrieved, while pMTG and LIFG showed effects of semantic selection. Moreover, TMS to LIFG and pMTG produced equal disruption of tasks tapping semantic control. The next challenges are to delineate the specific roles of each region within the semantic control network and to specify the way in which control processes interact with semantic representations to focus processing on relevant features of concepts.</description><subject>Adult and adolescent clinical studies</subject><subject>Anatomical correlates of behavior</subject><subject>Aphasia</subject><subject>Behavioral psychophysiology</subject><subject>Biological and medical sciences</subject><subject>Brain Mapping</subject><subject>Cerebral Cortex - physiology</subject><subject>Cognition</subject><subject>Cognition - physiology</subject><subject>Cortex</subject><subject>Cortex (frontal)</subject><subject>Cortex (parietal)</subject><subject>Cortex (temporal)</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Disorders of higher nervous function. Focal brain diseases. Central vestibular syndrome and deafness. Brain stem syndromes</subject><subject>fMRI</subject><subject>frontal gyrus</subject><subject>Functional magnetic resonance imaging</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Nerve Net - physiology</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neuropsychology</subject><subject>Organic mental disorders. Neuropsychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychopathology. Psychiatry</subject><subject>Reviews</subject><subject>Semantic cognition</subject><subject>Semantic dementia</subject><subject>Stroke</subject><subject>temporal gyrus</subject><subject>Temporal lobe</subject><subject>Transcranial Magnetic Stimulation</subject><issn>0010-9452</issn><issn>1973-8102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2rEzEYhYMo3nr1H4hkI7hwar6TcSFI8QuuuLCuQ5p5pzdlJqnJtNh_b3qn6k5dBQ7PScJ5EHpKyZISql7tlj7lCX4sGaGsRktCzD20oK3mjaGE3UcLQihpWiHZFXpUyo4QRoyUD9EV40wRReUC9etbwBEO2Q1440ooOPW4wOjiFDz2aRvDFFJ8jVcpHiFvQ9xiOIYOogfc5zTeldO-nPxtGtL29HIOwujuWBc7vP789TF60LuhwJPLeY2-vX-3Xn1sbr58-LR6e9N4ycTUuA44YR6E6oykEjppuNQcNgBcd6LttZLKeeV6IVq9AS60l0QL0yrQLev5NXox37vP6fsBymTHUDwMg4uQDsVSwY3irWjFv1HOuKnbcv0fKNVGEkNVRcWM-pxKydDbfa5b5JOlxJ692Z2dvdmzt3NavdXas8sLh80I3e_SL1EVeH4BXPFu6LOLPpQ_XN3AKEor92bmoK58DJBt8eEsqwsZ_GS7FP7-k58sHLfN</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Jefferies, Elizabeth</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7T9</scope></search><sort><creationdate>20130301</creationdate><title>The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS</title><author>Jefferies, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-ade302ce46d8515ed583573ebee37d49f7656ac6af4497be347c5074896e792f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult and adolescent clinical studies</topic><topic>Anatomical correlates of behavior</topic><topic>Aphasia</topic><topic>Behavioral psychophysiology</topic><topic>Biological and medical sciences</topic><topic>Brain Mapping</topic><topic>Cerebral Cortex - physiology</topic><topic>Cognition</topic><topic>Cognition - physiology</topic><topic>Cortex</topic><topic>Cortex (frontal)</topic><topic>Cortex (parietal)</topic><topic>Cortex (temporal)</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Disorders of higher nervous function. Focal brain diseases. Central vestibular syndrome and deafness. Brain stem syndromes</topic><topic>fMRI</topic><topic>frontal gyrus</topic><topic>Functional magnetic resonance imaging</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Nerve Net - physiology</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neuropsychology</topic><topic>Organic mental disorders. Neuropsychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychopathology. Psychiatry</topic><topic>Reviews</topic><topic>Semantic cognition</topic><topic>Semantic dementia</topic><topic>Stroke</topic><topic>temporal gyrus</topic><topic>Temporal lobe</topic><topic>Transcranial Magnetic Stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jefferies, Elizabeth</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>Cortex</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jefferies, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS</atitle><jtitle>Cortex</jtitle><addtitle>Cortex</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>49</volume><issue>3</issue><spage>611</spage><epage>625</epage><pages>611-625</pages><issn>0010-9452</issn><eissn>1973-8102</eissn><coden>CRTXAZ</coden><abstract>Recent studies suggest that a complex, distributed neural network underpins semantic cognition. This article reviews our contribution to this emerging picture and traces the putative roles of each region within this network. Neuropsychological studies indicate that semantic cognition draws on at least two interacting components: semantic representations [degraded in semantic dementia (SD)] and control processes [deficient in patients with multimodal semantic impairment following stroke aphasia (SA)]. To explore the first component, we employed distortion-corrected functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) in healthy volunteers: these studies convergently indicated that the anterior temporal lobes (ATLs; atrophied in SD) combine information from different modalities within an amodal semantic “hub”. Regions of cortex that code specific semantic features (“spokes”) also make a critical contribution to knowledge within particular categories. This network of brain regions interacts with semantic control processes reliant on left inferior frontal gyrus (LIFG), posterior middle temporal gyrus (pMTG) and inferior parietal cortices. SA patients with damage to these regions have difficulty focussing on aspects of knowledge that are relevant to the current goal or context, in both verbal and non-verbal tasks. SA patients with LIFG and temporoparietal lesions show similar deficits of semantic control, suggesting that a large-scale distributed cortical network underpins semantic control. Convergent evidence is again provided by fMRI and TMS. We separately manipulated the representational and control demands of a semantic task in fMRI, and found a dissociation within the temporal lobe: ATL was sensitive to the number of meanings retrieved, while pMTG and LIFG showed effects of semantic selection. Moreover, TMS to LIFG and pMTG produced equal disruption of tasks tapping semantic control. The next challenges are to delineate the specific roles of each region within the semantic control network and to specify the way in which control processes interact with semantic representations to focus processing on relevant features of concepts.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23260615</pmid><doi>10.1016/j.cortex.2012.10.008</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-9452
ispartof Cortex, 2013-03, Vol.49 (3), p.611-625
issn 0010-9452
1973-8102
language eng
recordid cdi_proquest_miscellaneous_1438639494
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adult and adolescent clinical studies
Anatomical correlates of behavior
Aphasia
Behavioral psychophysiology
Biological and medical sciences
Brain Mapping
Cerebral Cortex - physiology
Cognition
Cognition - physiology
Cortex
Cortex (frontal)
Cortex (parietal)
Cortex (temporal)
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Disorders of higher nervous function. Focal brain diseases. Central vestibular syndrome and deafness. Brain stem syndromes
fMRI
frontal gyrus
Functional magnetic resonance imaging
Fundamental and applied biological sciences. Psychology
Humans
Medical sciences
Nerve Net - physiology
Nervous system (semeiology, syndromes)
Neural networks
Neuroimaging
Neurology
Neuropsychology
Organic mental disorders. Neuropsychology
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychopathology. Psychiatry
Reviews
Semantic cognition
Semantic dementia
Stroke
temporal gyrus
Temporal lobe
Transcranial Magnetic Stimulation
title The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20neural%20basis%20of%20semantic%20cognition:%20Converging%20evidence%20from%20neuropsychology,%20neuroimaging%20and%20TMS&rft.jtitle=Cortex&rft.au=Jefferies,%20Elizabeth&rft.date=2013-03-01&rft.volume=49&rft.issue=3&rft.spage=611&rft.epage=625&rft.pages=611-625&rft.issn=0010-9452&rft.eissn=1973-8102&rft.coden=CRTXAZ&rft_id=info:doi/10.1016/j.cortex.2012.10.008&rft_dat=%3Cproquest_cross%3E1438639494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317850816&rft_id=info:pmid/23260615&rft_els_id=S0010945212003103&rfr_iscdi=true