Expected Optimal Feedback with Time-Varying Parameters

In this paper we derive the closed loop form of the Expected Optimal Feedback rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (Stochastic control for economic models, 1981 ; Stochastic control for economic mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2013-10, Vol.42 (3), p.351-371
Hauptverfasser: Tucci, Marco P., Kendrick, David A., Amman, Hans M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue 3
container_start_page 351
container_title Computational economics
container_volume 42
creator Tucci, Marco P.
Kendrick, David A.
Amman, Hans M.
description In this paper we derive the closed loop form of the Expected Optimal Feedback rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (Stochastic control for economic models, 1981 ; Stochastic control for economic models, 2002 , Chap. 6) where parameters are assumed to vary randomly around a known constant mean. Furthermore, we show that the cautionary myopic rule in Beck and Wieland (J Econ Dyn Control 26:1359–1377, 2002 ) model, a test bed for comparing various stochastic optimizations approaches, can be cast into this framework and can be treated as a special case of this solution.
doi_str_mv 10.1007/s10614-012-9340-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1437958857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1437958857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-657f4550ff1d3045aeb258f5ca1e8543cf5c5f0cc49738b614b1174a33c9a0f43</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCFy_RySbZbI5SWhWEeqheQzadrVv3n8kW7bc3ZT2I4Glm4Pce8x4hlwxuGIC6DQwyJiiwlGougMIRmTCp4qWVOCYT0KmiCrQ-JWchbAFAsjSdkGz-1aMbcJ0s-6FqbJ0sENeFde_JZzW8JauqQfpq_b5qN8mz9bbBAX04JyelrQNe_MwpeVnMV7MH-rS8f5zdPVEnGB9oJlUppISyZGsOQlosUpmX0lmGuRTcxVWW4JzQiudFTFAwpoTl3GkLpeBTcj369r772GEYTFMFh3VtW-x2wTDBlZZ5LlVEr_6g227n2_jdgeKQKa5kpNhIOd-F4LE0vY-x_d4wMIcmzdikiU2aQ5MGoiYdNSGy7Qb9L-d_Rd8i6nPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433067375</pqid></control><display><type>article</type><title>Expected Optimal Feedback with Time-Varying Parameters</title><source>SpringerLink Journals</source><creator>Tucci, Marco P. ; Kendrick, David A. ; Amman, Hans M.</creator><creatorcontrib>Tucci, Marco P. ; Kendrick, David A. ; Amman, Hans M.</creatorcontrib><description>In this paper we derive the closed loop form of the Expected Optimal Feedback rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (Stochastic control for economic models, 1981 ; Stochastic control for economic models, 2002 , Chap. 6) where parameters are assumed to vary randomly around a known constant mean. Furthermore, we show that the cautionary myopic rule in Beck and Wieland (J Econ Dyn Control 26:1359–1377, 2002 ) model, a test bed for comparing various stochastic optimizations approaches, can be cast into this framework and can be treated as a special case of this solution.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-012-9340-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Behavioral/Experimental Economics ; Computational mathematics ; Computational methods ; Computer Appl. in Social and Behavioral Sciences ; Control theory ; Data analysis ; Econometrics ; Economic models ; Economic statistics ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Kalman filters ; Markov analysis ; Math Applications in Computer Science ; Operations Research/Decision Theory ; Optimization ; Random sampling ; Stochastic models ; Studies ; Time series</subject><ispartof>Computational economics, 2013-10, Vol.42 (3), p.351-371</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-657f4550ff1d3045aeb258f5ca1e8543cf5c5f0cc49738b614b1174a33c9a0f43</citedby><cites>FETCH-LOGICAL-c413t-657f4550ff1d3045aeb258f5ca1e8543cf5c5f0cc49738b614b1174a33c9a0f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-012-9340-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-012-9340-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tucci, Marco P.</creatorcontrib><creatorcontrib>Kendrick, David A.</creatorcontrib><creatorcontrib>Amman, Hans M.</creatorcontrib><title>Expected Optimal Feedback with Time-Varying Parameters</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>In this paper we derive the closed loop form of the Expected Optimal Feedback rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (Stochastic control for economic models, 1981 ; Stochastic control for economic models, 2002 , Chap. 6) where parameters are assumed to vary randomly around a known constant mean. Furthermore, we show that the cautionary myopic rule in Beck and Wieland (J Econ Dyn Control 26:1359–1377, 2002 ) model, a test bed for comparing various stochastic optimizations approaches, can be cast into this framework and can be treated as a special case of this solution.</description><subject>Approximation</subject><subject>Behavioral/Experimental Economics</subject><subject>Computational mathematics</subject><subject>Computational methods</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Control theory</subject><subject>Data analysis</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Kalman filters</subject><subject>Markov analysis</subject><subject>Math Applications in Computer Science</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Random sampling</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Time series</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuCFy_RySbZbI5SWhWEeqheQzadrVv3n8kW7bc3ZT2I4Glm4Pce8x4hlwxuGIC6DQwyJiiwlGougMIRmTCp4qWVOCYT0KmiCrQ-JWchbAFAsjSdkGz-1aMbcJ0s-6FqbJ0sENeFde_JZzW8JauqQfpq_b5qN8mz9bbBAX04JyelrQNe_MwpeVnMV7MH-rS8f5zdPVEnGB9oJlUppISyZGsOQlosUpmX0lmGuRTcxVWW4JzQiudFTFAwpoTl3GkLpeBTcj369r772GEYTFMFh3VtW-x2wTDBlZZ5LlVEr_6g227n2_jdgeKQKa5kpNhIOd-F4LE0vY-x_d4wMIcmzdikiU2aQ5MGoiYdNSGy7Qb9L-d_Rd8i6nPM</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Tucci, Marco P.</creator><creator>Kendrick, David A.</creator><creator>Amman, Hans M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20131001</creationdate><title>Expected Optimal Feedback with Time-Varying Parameters</title><author>Tucci, Marco P. ; Kendrick, David A. ; Amman, Hans M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-657f4550ff1d3045aeb258f5ca1e8543cf5c5f0cc49738b614b1174a33c9a0f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Behavioral/Experimental Economics</topic><topic>Computational mathematics</topic><topic>Computational methods</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Control theory</topic><topic>Data analysis</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Kalman filters</topic><topic>Markov analysis</topic><topic>Math Applications in Computer Science</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Random sampling</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tucci, Marco P.</creatorcontrib><creatorcontrib>Kendrick, David A.</creatorcontrib><creatorcontrib>Amman, Hans M.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tucci, Marco P.</au><au>Kendrick, David A.</au><au>Amman, Hans M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expected Optimal Feedback with Time-Varying Parameters</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>42</volume><issue>3</issue><spage>351</spage><epage>371</epage><pages>351-371</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>In this paper we derive the closed loop form of the Expected Optimal Feedback rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (Stochastic control for economic models, 1981 ; Stochastic control for economic models, 2002 , Chap. 6) where parameters are assumed to vary randomly around a known constant mean. Furthermore, we show that the cautionary myopic rule in Beck and Wieland (J Econ Dyn Control 26:1359–1377, 2002 ) model, a test bed for comparing various stochastic optimizations approaches, can be cast into this framework and can be treated as a special case of this solution.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10614-012-9340-0</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 2013-10, Vol.42 (3), p.351-371
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_miscellaneous_1437958857
source SpringerLink Journals
subjects Approximation
Behavioral/Experimental Economics
Computational mathematics
Computational methods
Computer Appl. in Social and Behavioral Sciences
Control theory
Data analysis
Econometrics
Economic models
Economic statistics
Economic theory
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Kalman filters
Markov analysis
Math Applications in Computer Science
Operations Research/Decision Theory
Optimization
Random sampling
Stochastic models
Studies
Time series
title Expected Optimal Feedback with Time-Varying Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expected%20Optimal%20Feedback%20with%20Time-Varying%20Parameters&rft.jtitle=Computational%20economics&rft.au=Tucci,%20Marco%20P.&rft.date=2013-10-01&rft.volume=42&rft.issue=3&rft.spage=351&rft.epage=371&rft.pages=351-371&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-012-9340-0&rft_dat=%3Cproquest_cross%3E1437958857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433067375&rft_id=info:pmid/&rfr_iscdi=true