Expected Optimal Feedback with Time-Varying Parameters
In this paper we derive the closed loop form of the Expected Optimal Feedback rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (Stochastic control for economic models, 1981 ; Stochastic control for economic mode...
Gespeichert in:
Veröffentlicht in: | Computational economics 2013-10, Vol.42 (3), p.351-371 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 371 |
---|---|
container_issue | 3 |
container_start_page | 351 |
container_title | Computational economics |
container_volume | 42 |
creator | Tucci, Marco P. Kendrick, David A. Amman, Hans M. |
description | In this paper we derive the closed loop form of the
Expected Optimal Feedback
rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (Stochastic control for economic models,
1981
; Stochastic control for economic models,
2002
, Chap. 6) where parameters are assumed to vary randomly around a known constant mean. Furthermore, we show that the cautionary myopic rule in Beck and Wieland (J Econ Dyn Control 26:1359–1377,
2002
) model, a test bed for comparing various stochastic optimizations approaches, can be cast into this framework and can be treated as a special case of this solution. |
doi_str_mv | 10.1007/s10614-012-9340-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1437958857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1437958857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-657f4550ff1d3045aeb258f5ca1e8543cf5c5f0cc49738b614b1174a33c9a0f43</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCFy_RySbZbI5SWhWEeqheQzadrVv3n8kW7bc3ZT2I4Glm4Pce8x4hlwxuGIC6DQwyJiiwlGougMIRmTCp4qWVOCYT0KmiCrQ-JWchbAFAsjSdkGz-1aMbcJ0s-6FqbJ0sENeFde_JZzW8JauqQfpq_b5qN8mz9bbBAX04JyelrQNe_MwpeVnMV7MH-rS8f5zdPVEnGB9oJlUppISyZGsOQlosUpmX0lmGuRTcxVWW4JzQiudFTFAwpoTl3GkLpeBTcj369r772GEYTFMFh3VtW-x2wTDBlZZ5LlVEr_6g227n2_jdgeKQKa5kpNhIOd-F4LE0vY-x_d4wMIcmzdikiU2aQ5MGoiYdNSGy7Qb9L-d_Rd8i6nPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433067375</pqid></control><display><type>article</type><title>Expected Optimal Feedback with Time-Varying Parameters</title><source>SpringerLink Journals</source><creator>Tucci, Marco P. ; Kendrick, David A. ; Amman, Hans M.</creator><creatorcontrib>Tucci, Marco P. ; Kendrick, David A. ; Amman, Hans M.</creatorcontrib><description>In this paper we derive the closed loop form of the
Expected Optimal Feedback
rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (Stochastic control for economic models,
1981
; Stochastic control for economic models,
2002
, Chap. 6) where parameters are assumed to vary randomly around a known constant mean. Furthermore, we show that the cautionary myopic rule in Beck and Wieland (J Econ Dyn Control 26:1359–1377,
2002
) model, a test bed for comparing various stochastic optimizations approaches, can be cast into this framework and can be treated as a special case of this solution.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-012-9340-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Behavioral/Experimental Economics ; Computational mathematics ; Computational methods ; Computer Appl. in Social and Behavioral Sciences ; Control theory ; Data analysis ; Econometrics ; Economic models ; Economic statistics ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Kalman filters ; Markov analysis ; Math Applications in Computer Science ; Operations Research/Decision Theory ; Optimization ; Random sampling ; Stochastic models ; Studies ; Time series</subject><ispartof>Computational economics, 2013-10, Vol.42 (3), p.351-371</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-657f4550ff1d3045aeb258f5ca1e8543cf5c5f0cc49738b614b1174a33c9a0f43</citedby><cites>FETCH-LOGICAL-c413t-657f4550ff1d3045aeb258f5ca1e8543cf5c5f0cc49738b614b1174a33c9a0f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-012-9340-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-012-9340-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tucci, Marco P.</creatorcontrib><creatorcontrib>Kendrick, David A.</creatorcontrib><creatorcontrib>Amman, Hans M.</creatorcontrib><title>Expected Optimal Feedback with Time-Varying Parameters</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>In this paper we derive the closed loop form of the
Expected Optimal Feedback
rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (Stochastic control for economic models,
1981
; Stochastic control for economic models,
2002
, Chap. 6) where parameters are assumed to vary randomly around a known constant mean. Furthermore, we show that the cautionary myopic rule in Beck and Wieland (J Econ Dyn Control 26:1359–1377,
2002
) model, a test bed for comparing various stochastic optimizations approaches, can be cast into this framework and can be treated as a special case of this solution.</description><subject>Approximation</subject><subject>Behavioral/Experimental Economics</subject><subject>Computational mathematics</subject><subject>Computational methods</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Control theory</subject><subject>Data analysis</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Kalman filters</subject><subject>Markov analysis</subject><subject>Math Applications in Computer Science</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Random sampling</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Time series</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuCFy_RySbZbI5SWhWEeqheQzadrVv3n8kW7bc3ZT2I4Glm4Pce8x4hlwxuGIC6DQwyJiiwlGougMIRmTCp4qWVOCYT0KmiCrQ-JWchbAFAsjSdkGz-1aMbcJ0s-6FqbJ0sENeFde_JZzW8JauqQfpq_b5qN8mz9bbBAX04JyelrQNe_MwpeVnMV7MH-rS8f5zdPVEnGB9oJlUppISyZGsOQlosUpmX0lmGuRTcxVWW4JzQiudFTFAwpoTl3GkLpeBTcj369r772GEYTFMFh3VtW-x2wTDBlZZ5LlVEr_6g227n2_jdgeKQKa5kpNhIOd-F4LE0vY-x_d4wMIcmzdikiU2aQ5MGoiYdNSGy7Qb9L-d_Rd8i6nPM</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Tucci, Marco P.</creator><creator>Kendrick, David A.</creator><creator>Amman, Hans M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20131001</creationdate><title>Expected Optimal Feedback with Time-Varying Parameters</title><author>Tucci, Marco P. ; Kendrick, David A. ; Amman, Hans M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-657f4550ff1d3045aeb258f5ca1e8543cf5c5f0cc49738b614b1174a33c9a0f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Behavioral/Experimental Economics</topic><topic>Computational mathematics</topic><topic>Computational methods</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Control theory</topic><topic>Data analysis</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Kalman filters</topic><topic>Markov analysis</topic><topic>Math Applications in Computer Science</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Random sampling</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tucci, Marco P.</creatorcontrib><creatorcontrib>Kendrick, David A.</creatorcontrib><creatorcontrib>Amman, Hans M.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tucci, Marco P.</au><au>Kendrick, David A.</au><au>Amman, Hans M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expected Optimal Feedback with Time-Varying Parameters</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>42</volume><issue>3</issue><spage>351</spage><epage>371</epage><pages>351-371</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>In this paper we derive the closed loop form of the
Expected Optimal Feedback
rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (Stochastic control for economic models,
1981
; Stochastic control for economic models,
2002
, Chap. 6) where parameters are assumed to vary randomly around a known constant mean. Furthermore, we show that the cautionary myopic rule in Beck and Wieland (J Econ Dyn Control 26:1359–1377,
2002
) model, a test bed for comparing various stochastic optimizations approaches, can be cast into this framework and can be treated as a special case of this solution.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10614-012-9340-0</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2013-10, Vol.42 (3), p.351-371 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_miscellaneous_1437958857 |
source | SpringerLink Journals |
subjects | Approximation Behavioral/Experimental Economics Computational mathematics Computational methods Computer Appl. in Social and Behavioral Sciences Control theory Data analysis Econometrics Economic models Economic statistics Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Kalman filters Markov analysis Math Applications in Computer Science Operations Research/Decision Theory Optimization Random sampling Stochastic models Studies Time series |
title | Expected Optimal Feedback with Time-Varying Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expected%20Optimal%20Feedback%20with%20Time-Varying%20Parameters&rft.jtitle=Computational%20economics&rft.au=Tucci,%20Marco%20P.&rft.date=2013-10-01&rft.volume=42&rft.issue=3&rft.spage=351&rft.epage=371&rft.pages=351-371&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-012-9340-0&rft_dat=%3Cproquest_cross%3E1437958857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433067375&rft_id=info:pmid/&rfr_iscdi=true |