Robotic Leg Control with EMG Decoding in an Amputee with Nerve Transfers

A 31-year-old man who underwent knee-disarticulation amputation had improved control of a robotic leg prosthesis with the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles. Summary The clinical application of robotic technology to powe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New England journal of medicine 2013-09, Vol.369 (13), p.1237-1242
Hauptverfasser: Hargrove, Levi J, Simon, Ann M, Young, Aaron J, Lipschutz, Robert D, Finucane, Suzanne B, Smith, Douglas G, Kuiken, Todd A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1242
container_issue 13
container_start_page 1237
container_title The New England journal of medicine
container_volume 369
creator Hargrove, Levi J
Simon, Ann M
Young, Aaron J
Lipschutz, Robert D
Finucane, Suzanne B
Smith, Douglas G
Kuiken, Todd A
description A 31-year-old man who underwent knee-disarticulation amputation had improved control of a robotic leg prosthesis with the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles. Summary The clinical application of robotic technology to powered prosthetic knees and ankles is limited by the lack of a robust control strategy. We found that the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles in a patient who had undergone knee amputation improved control of a robotic leg prosthesis. EMG signals were decoded with a pattern-recognition algorithm and combined with data from sensors on the prosthesis to interpret the patient's intended movements. This provided robust and intuitive control of ambulation — with seamless transitions between walking on level ground, stairs, and ramps — . . .
doi_str_mv 10.1056/NEJMoa1300126
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1437582392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1437582392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-67eaa80161a3aa7b4f41e95379954136ab9c7f62b877039cbc4609fa43ae605b3</originalsourceid><addsrcrecordid>eNp10M1LwzAYBvAgis6Po1cJiOClmjRp0hzHnJuyTZB5Lml8qx1tM5NW8b83uulQMJcc3l-evDwIHVNyQUkiLmfD26nVlBFCY7GFejRhLOKciG3UIyROIy4V20P73i9IOJSrXbQXh7mQnPfQ-N7mti0NnsATHtimdbbCb2X7jIfTEb4CYx_L5gmXDdYN7tfLrgVYzWfgXgHPnW58Ac4fop1CVx6O1vcBergezgfjaHI3uhn0J5HhgreRkKB1Sqigmmktc15wCiphUqmEUyZ0rowsRJynUhKmTB6eEVVozjQIkuTsAJ2vcpfOvnTg26wuvYGq0g3YzmeUM5mkMVNxoKd_6MJ2rgnbfSmahmQZVLRSxlnvHRTZ0pW1du8ZJdlnxdmvioM_Wad2eQ2PP_q70wDO1kB7o6siNGRKv3FSKMlFsnF17bMGFvU_H34ARg6L6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437186097</pqid></control><display><type>article</type><title>Robotic Leg Control with EMG Decoding in an Amputee with Nerve Transfers</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>New England Journal of Medicine Current</source><source>ProQuest Central UK/Ireland</source><creator>Hargrove, Levi J ; Simon, Ann M ; Young, Aaron J ; Lipschutz, Robert D ; Finucane, Suzanne B ; Smith, Douglas G ; Kuiken, Todd A</creator><creatorcontrib>Hargrove, Levi J ; Simon, Ann M ; Young, Aaron J ; Lipschutz, Robert D ; Finucane, Suzanne B ; Smith, Douglas G ; Kuiken, Todd A</creatorcontrib><description>A 31-year-old man who underwent knee-disarticulation amputation had improved control of a robotic leg prosthesis with the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles. Summary The clinical application of robotic technology to powered prosthetic knees and ankles is limited by the lack of a robust control strategy. We found that the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles in a patient who had undergone knee amputation improved control of a robotic leg prosthesis. EMG signals were decoded with a pattern-recognition algorithm and combined with data from sensors on the prosthesis to interpret the patient's intended movements. This provided robust and intuitive control of ambulation — with seamless transitions between walking on level ground, stairs, and ramps — . . .</description><identifier>ISSN: 0028-4793</identifier><identifier>EISSN: 1533-4406</identifier><identifier>DOI: 10.1056/NEJMoa1300126</identifier><identifier>PMID: 24066744</identifier><identifier>CODEN: NEJMAG</identifier><language>eng</language><publisher>Waltham, MA: Massachusetts Medical Society</publisher><subject>Accidents, Traffic ; Accuracy ; Adult ; Amputation ; Amputation - methods ; Amputees - rehabilitation ; Ankle ; Artificial Limbs ; Biological and medical sciences ; Classification ; Cranial nerves. Peripheral nerves. Autonomic nervous system ; Data processing ; Electrodes ; Electrodiagnosis. Electric activity recording ; Electromyography ; General aspects ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Knee ; Laboratories ; Leg ; Leg - innervation ; Leg - physiology ; Leg - surgery ; Medical research ; Medical sciences ; Motorcycles ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiology ; Muscle, Skeletal - surgery ; Muscles ; Nerve Transfer ; Nervous system ; Neurosurgery ; Posture ; Prostheses ; Robotic surgery ; Robotics ; Sensors ; Surgery ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Walking ; Walking - physiology</subject><ispartof>The New England journal of medicine, 2013-09, Vol.369 (13), p.1237-1242</ispartof><rights>Copyright © 2013 Massachusetts Medical Society. All rights reserved.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-67eaa80161a3aa7b4f41e95379954136ab9c7f62b877039cbc4609fa43ae605b3</citedby><cites>FETCH-LOGICAL-c464t-67eaa80161a3aa7b4f41e95379954136ab9c7f62b877039cbc4609fa43ae605b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.nejm.org/doi/pdf/10.1056/NEJMoa1300126$$EPDF$$P50$$Gmms$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1437186097?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,2759,2760,26103,27924,27925,52382,54064,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27697465$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24066744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hargrove, Levi J</creatorcontrib><creatorcontrib>Simon, Ann M</creatorcontrib><creatorcontrib>Young, Aaron J</creatorcontrib><creatorcontrib>Lipschutz, Robert D</creatorcontrib><creatorcontrib>Finucane, Suzanne B</creatorcontrib><creatorcontrib>Smith, Douglas G</creatorcontrib><creatorcontrib>Kuiken, Todd A</creatorcontrib><title>Robotic Leg Control with EMG Decoding in an Amputee with Nerve Transfers</title><title>The New England journal of medicine</title><addtitle>N Engl J Med</addtitle><description>A 31-year-old man who underwent knee-disarticulation amputation had improved control of a robotic leg prosthesis with the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles. Summary The clinical application of robotic technology to powered prosthetic knees and ankles is limited by the lack of a robust control strategy. We found that the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles in a patient who had undergone knee amputation improved control of a robotic leg prosthesis. EMG signals were decoded with a pattern-recognition algorithm and combined with data from sensors on the prosthesis to interpret the patient's intended movements. This provided robust and intuitive control of ambulation — with seamless transitions between walking on level ground, stairs, and ramps — . . .</description><subject>Accidents, Traffic</subject><subject>Accuracy</subject><subject>Adult</subject><subject>Amputation</subject><subject>Amputation - methods</subject><subject>Amputees - rehabilitation</subject><subject>Ankle</subject><subject>Artificial Limbs</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Cranial nerves. Peripheral nerves. Autonomic nervous system</subject><subject>Data processing</subject><subject>Electrodes</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Electromyography</subject><subject>General aspects</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Knee</subject><subject>Laboratories</subject><subject>Leg</subject><subject>Leg - innervation</subject><subject>Leg - physiology</subject><subject>Leg - surgery</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Motorcycles</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscle, Skeletal - surgery</subject><subject>Muscles</subject><subject>Nerve Transfer</subject><subject>Nervous system</subject><subject>Neurosurgery</subject><subject>Posture</subject><subject>Prostheses</subject><subject>Robotic surgery</subject><subject>Robotics</subject><subject>Sensors</subject><subject>Surgery</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Walking</subject><subject>Walking - physiology</subject><issn>0028-4793</issn><issn>1533-4406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10M1LwzAYBvAgis6Po1cJiOClmjRp0hzHnJuyTZB5Lml8qx1tM5NW8b83uulQMJcc3l-evDwIHVNyQUkiLmfD26nVlBFCY7GFejRhLOKciG3UIyROIy4V20P73i9IOJSrXbQXh7mQnPfQ-N7mti0NnsATHtimdbbCb2X7jIfTEb4CYx_L5gmXDdYN7tfLrgVYzWfgXgHPnW58Ac4fop1CVx6O1vcBergezgfjaHI3uhn0J5HhgreRkKB1Sqigmmktc15wCiphUqmEUyZ0rowsRJynUhKmTB6eEVVozjQIkuTsAJ2vcpfOvnTg26wuvYGq0g3YzmeUM5mkMVNxoKd_6MJ2rgnbfSmahmQZVLRSxlnvHRTZ0pW1du8ZJdlnxdmvioM_Wad2eQ2PP_q70wDO1kB7o6siNGRKv3FSKMlFsnF17bMGFvU_H34ARg6L6g</recordid><startdate>20130926</startdate><enddate>20130926</enddate><creator>Hargrove, Levi J</creator><creator>Simon, Ann M</creator><creator>Young, Aaron J</creator><creator>Lipschutz, Robert D</creator><creator>Finucane, Suzanne B</creator><creator>Smith, Douglas G</creator><creator>Kuiken, Todd A</creator><general>Massachusetts Medical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0TZ</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K0Y</scope><scope>LK8</scope><scope>M0R</scope><scope>M0T</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20130926</creationdate><title>Robotic Leg Control with EMG Decoding in an Amputee with Nerve Transfers</title><author>Hargrove, Levi J ; Simon, Ann M ; Young, Aaron J ; Lipschutz, Robert D ; Finucane, Suzanne B ; Smith, Douglas G ; Kuiken, Todd A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-67eaa80161a3aa7b4f41e95379954136ab9c7f62b877039cbc4609fa43ae605b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accidents, Traffic</topic><topic>Accuracy</topic><topic>Adult</topic><topic>Amputation</topic><topic>Amputation - methods</topic><topic>Amputees - rehabilitation</topic><topic>Ankle</topic><topic>Artificial Limbs</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Cranial nerves. Peripheral nerves. Autonomic nervous system</topic><topic>Data processing</topic><topic>Electrodes</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Electromyography</topic><topic>General aspects</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Knee</topic><topic>Laboratories</topic><topic>Leg</topic><topic>Leg - innervation</topic><topic>Leg - physiology</topic><topic>Leg - surgery</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Motorcycles</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscle, Skeletal - surgery</topic><topic>Muscles</topic><topic>Nerve Transfer</topic><topic>Nervous system</topic><topic>Neurosurgery</topic><topic>Posture</topic><topic>Prostheses</topic><topic>Robotic surgery</topic><topic>Robotics</topic><topic>Sensors</topic><topic>Surgery</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Walking</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hargrove, Levi J</creatorcontrib><creatorcontrib>Simon, Ann M</creatorcontrib><creatorcontrib>Young, Aaron J</creatorcontrib><creatorcontrib>Lipschutz, Robert D</creatorcontrib><creatorcontrib>Finucane, Suzanne B</creatorcontrib><creatorcontrib>Smith, Douglas G</creatorcontrib><creatorcontrib>Kuiken, Todd A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Pharma and Biotech Premium PRO</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>New England Journal of Medicine</collection><collection>ProQuest Biological Science Collection</collection><collection>Family Health Database (Proquest)</collection><collection>Health Management Database (Proquest)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The New England journal of medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hargrove, Levi J</au><au>Simon, Ann M</au><au>Young, Aaron J</au><au>Lipschutz, Robert D</au><au>Finucane, Suzanne B</au><au>Smith, Douglas G</au><au>Kuiken, Todd A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robotic Leg Control with EMG Decoding in an Amputee with Nerve Transfers</atitle><jtitle>The New England journal of medicine</jtitle><addtitle>N Engl J Med</addtitle><date>2013-09-26</date><risdate>2013</risdate><volume>369</volume><issue>13</issue><spage>1237</spage><epage>1242</epage><pages>1237-1242</pages><issn>0028-4793</issn><eissn>1533-4406</eissn><coden>NEJMAG</coden><abstract>A 31-year-old man who underwent knee-disarticulation amputation had improved control of a robotic leg prosthesis with the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles. Summary The clinical application of robotic technology to powered prosthetic knees and ankles is limited by the lack of a robust control strategy. We found that the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles in a patient who had undergone knee amputation improved control of a robotic leg prosthesis. EMG signals were decoded with a pattern-recognition algorithm and combined with data from sensors on the prosthesis to interpret the patient's intended movements. This provided robust and intuitive control of ambulation — with seamless transitions between walking on level ground, stairs, and ramps — . . .</abstract><cop>Waltham, MA</cop><pub>Massachusetts Medical Society</pub><pmid>24066744</pmid><doi>10.1056/NEJMoa1300126</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-4793
ispartof The New England journal of medicine, 2013-09, Vol.369 (13), p.1237-1242
issn 0028-4793
1533-4406
language eng
recordid cdi_proquest_miscellaneous_1437582392
source MEDLINE; Free E-Journal (出版社公開部分のみ); New England Journal of Medicine Current; ProQuest Central UK/Ireland
subjects Accidents, Traffic
Accuracy
Adult
Amputation
Amputation - methods
Amputees - rehabilitation
Ankle
Artificial Limbs
Biological and medical sciences
Classification
Cranial nerves. Peripheral nerves. Autonomic nervous system
Data processing
Electrodes
Electrodiagnosis. Electric activity recording
Electromyography
General aspects
Humans
Investigative techniques, diagnostic techniques (general aspects)
Knee
Laboratories
Leg
Leg - innervation
Leg - physiology
Leg - surgery
Medical research
Medical sciences
Motorcycles
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
Muscle, Skeletal - surgery
Muscles
Nerve Transfer
Nervous system
Neurosurgery
Posture
Prostheses
Robotic surgery
Robotics
Sensors
Surgery
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Walking
Walking - physiology
title Robotic Leg Control with EMG Decoding in an Amputee with Nerve Transfers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robotic%20Leg%20Control%20with%20EMG%20Decoding%20in%20an%20Amputee%20with%20Nerve%20Transfers&rft.jtitle=The%20New%20England%20journal%20of%20medicine&rft.au=Hargrove,%20Levi%20J&rft.date=2013-09-26&rft.volume=369&rft.issue=13&rft.spage=1237&rft.epage=1242&rft.pages=1237-1242&rft.issn=0028-4793&rft.eissn=1533-4406&rft.coden=NEJMAG&rft_id=info:doi/10.1056/NEJMoa1300126&rft_dat=%3Cproquest_cross%3E1437582392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437186097&rft_id=info:pmid/24066744&rfr_iscdi=true