Hydrophobic interactions and hydrogen bonds in β-sheet formation

In this study, we investigate interactions of extended conformations of homodimeric peptides made of small (glycine or alanine) and large hydrophobic (valine or leucine) sidechains using all-atom molecular dynamics simulations to decipher driving forces for β-sheet formation. We make use of a period...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2013-09, Vol.139 (11), p.115103-115103
Hauptverfasser: Narayanan, Chitra, Dias, Cristiano L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115103
container_issue 11
container_start_page 115103
container_title The Journal of chemical physics
container_volume 139
creator Narayanan, Chitra
Dias, Cristiano L
description In this study, we investigate interactions of extended conformations of homodimeric peptides made of small (glycine or alanine) and large hydrophobic (valine or leucine) sidechains using all-atom molecular dynamics simulations to decipher driving forces for β-sheet formation. We make use of a periodic boundary condition setup in which individual peptides are infinitely long and stretched. Dimers adopt β-sheet conformations at short interpeptide distances (ξ ~ 0.5 nm) and at intermediate distances (~0.8 nm), valine and leucine homodimers assume cross-β-like conformations with side chains interpenetrating each other. These two states are identified as minima in the potential of mean force. While the number of interpeptide hydrogen bonds increases with decreasing interpeptide distance, the total hydrogen bond number in the system does not change significantly, suggesting that formation of β-sheet structures from extended conformations is not driven by hydrogen bonds. This is supported by an increase in electrostatic energy at short interpeptide distances. A remarkable correlation between the volume of the system and the total electrostatic energy is observed, further reinforcing the idea that excluding water in proteins comes with an enthalpic penalty. We also discuss microscopic mechanisms accounting for β-sheet formation based on computed enthalpy and entropy and we show that they are different for peptides with small and large side chains.
doi_str_mv 10.1063/1.4821596
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1437578249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1437578249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-f9711efe892d11719d75e9158c82dbbfd6b356082a5167b6c9110b2da8b9d4743</originalsourceid><addsrcrecordid>eNo9kL1OwzAURi0EoqUw8AIoIwwp9zr-HasKKFIlFpgtO3ZoUBMXOx36WjwIz0QrCtM3fEdnOIRcI0wRRHWPU6Yoci1OyBhB6VIKDadkDECx1ALEiFzk_AEAKCk7JyPKQEKFOCazxc6nuFlF19ZF2w8h2XpoY58L2_tidTjfQ1-42Pu8_4vvrzKvQhiKJqbOHshLctbYdQ5Xx52Qt8eH1_miXL48Pc9ny7Kmig9loyViaILS1CNK1F7yoJGrWlHvXOOFq7gARS1HIZ2oNSI46q1y2jPJqgm5_fVuUvzchjyYrs11WK9tH-I2G2SV5FJRpvfo3S9ap5hzCo3ZpLazaWcQzKGYQXMstmdvjtqt64L_J_8SVT_FPWVL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437578249</pqid></control><display><type>article</type><title>Hydrophobic interactions and hydrogen bonds in β-sheet formation</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Narayanan, Chitra ; Dias, Cristiano L</creator><creatorcontrib>Narayanan, Chitra ; Dias, Cristiano L</creatorcontrib><description>In this study, we investigate interactions of extended conformations of homodimeric peptides made of small (glycine or alanine) and large hydrophobic (valine or leucine) sidechains using all-atom molecular dynamics simulations to decipher driving forces for β-sheet formation. We make use of a periodic boundary condition setup in which individual peptides are infinitely long and stretched. Dimers adopt β-sheet conformations at short interpeptide distances (ξ ~ 0.5 nm) and at intermediate distances (~0.8 nm), valine and leucine homodimers assume cross-β-like conformations with side chains interpenetrating each other. These two states are identified as minima in the potential of mean force. While the number of interpeptide hydrogen bonds increases with decreasing interpeptide distance, the total hydrogen bond number in the system does not change significantly, suggesting that formation of β-sheet structures from extended conformations is not driven by hydrogen bonds. This is supported by an increase in electrostatic energy at short interpeptide distances. A remarkable correlation between the volume of the system and the total electrostatic energy is observed, further reinforcing the idea that excluding water in proteins comes with an enthalpic penalty. We also discuss microscopic mechanisms accounting for β-sheet formation based on computed enthalpy and entropy and we show that they are different for peptides with small and large side chains.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4821596</identifier><identifier>PMID: 24070311</identifier><language>eng</language><publisher>United States</publisher><subject>Alanine - chemistry ; Glycine - chemistry ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Molecular Dynamics Simulation ; Peptides - chemistry ; Protein Structure, Secondary ; Static Electricity ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2013-09, Vol.139 (11), p.115103-115103</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-f9711efe892d11719d75e9158c82dbbfd6b356082a5167b6c9110b2da8b9d4743</citedby><cites>FETCH-LOGICAL-c285t-f9711efe892d11719d75e9158c82dbbfd6b356082a5167b6c9110b2da8b9d4743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24070311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Narayanan, Chitra</creatorcontrib><creatorcontrib>Dias, Cristiano L</creatorcontrib><title>Hydrophobic interactions and hydrogen bonds in β-sheet formation</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>In this study, we investigate interactions of extended conformations of homodimeric peptides made of small (glycine or alanine) and large hydrophobic (valine or leucine) sidechains using all-atom molecular dynamics simulations to decipher driving forces for β-sheet formation. We make use of a periodic boundary condition setup in which individual peptides are infinitely long and stretched. Dimers adopt β-sheet conformations at short interpeptide distances (ξ ~ 0.5 nm) and at intermediate distances (~0.8 nm), valine and leucine homodimers assume cross-β-like conformations with side chains interpenetrating each other. These two states are identified as minima in the potential of mean force. While the number of interpeptide hydrogen bonds increases with decreasing interpeptide distance, the total hydrogen bond number in the system does not change significantly, suggesting that formation of β-sheet structures from extended conformations is not driven by hydrogen bonds. This is supported by an increase in electrostatic energy at short interpeptide distances. A remarkable correlation between the volume of the system and the total electrostatic energy is observed, further reinforcing the idea that excluding water in proteins comes with an enthalpic penalty. We also discuss microscopic mechanisms accounting for β-sheet formation based on computed enthalpy and entropy and we show that they are different for peptides with small and large side chains.</description><subject>Alanine - chemistry</subject><subject>Glycine - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides - chemistry</subject><subject>Protein Structure, Secondary</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kL1OwzAURi0EoqUw8AIoIwwp9zr-HasKKFIlFpgtO3ZoUBMXOx36WjwIz0QrCtM3fEdnOIRcI0wRRHWPU6Yoci1OyBhB6VIKDadkDECx1ALEiFzk_AEAKCk7JyPKQEKFOCazxc6nuFlF19ZF2w8h2XpoY58L2_tidTjfQ1-42Pu8_4vvrzKvQhiKJqbOHshLctbYdQ5Xx52Qt8eH1_miXL48Pc9ny7Kmig9loyViaILS1CNK1F7yoJGrWlHvXOOFq7gARS1HIZ2oNSI46q1y2jPJqgm5_fVuUvzchjyYrs11WK9tH-I2G2SV5FJRpvfo3S9ap5hzCo3ZpLazaWcQzKGYQXMstmdvjtqt64L_J_8SVT_FPWVL</recordid><startdate>20130921</startdate><enddate>20130921</enddate><creator>Narayanan, Chitra</creator><creator>Dias, Cristiano L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130921</creationdate><title>Hydrophobic interactions and hydrogen bonds in β-sheet formation</title><author>Narayanan, Chitra ; Dias, Cristiano L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-f9711efe892d11719d75e9158c82dbbfd6b356082a5167b6c9110b2da8b9d4743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alanine - chemistry</topic><topic>Glycine - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides - chemistry</topic><topic>Protein Structure, Secondary</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narayanan, Chitra</creatorcontrib><creatorcontrib>Dias, Cristiano L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narayanan, Chitra</au><au>Dias, Cristiano L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrophobic interactions and hydrogen bonds in β-sheet formation</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-09-21</date><risdate>2013</risdate><volume>139</volume><issue>11</issue><spage>115103</spage><epage>115103</epage><pages>115103-115103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>In this study, we investigate interactions of extended conformations of homodimeric peptides made of small (glycine or alanine) and large hydrophobic (valine or leucine) sidechains using all-atom molecular dynamics simulations to decipher driving forces for β-sheet formation. We make use of a periodic boundary condition setup in which individual peptides are infinitely long and stretched. Dimers adopt β-sheet conformations at short interpeptide distances (ξ ~ 0.5 nm) and at intermediate distances (~0.8 nm), valine and leucine homodimers assume cross-β-like conformations with side chains interpenetrating each other. These two states are identified as minima in the potential of mean force. While the number of interpeptide hydrogen bonds increases with decreasing interpeptide distance, the total hydrogen bond number in the system does not change significantly, suggesting that formation of β-sheet structures from extended conformations is not driven by hydrogen bonds. This is supported by an increase in electrostatic energy at short interpeptide distances. A remarkable correlation between the volume of the system and the total electrostatic energy is observed, further reinforcing the idea that excluding water in proteins comes with an enthalpic penalty. We also discuss microscopic mechanisms accounting for β-sheet formation based on computed enthalpy and entropy and we show that they are different for peptides with small and large side chains.</abstract><cop>United States</cop><pmid>24070311</pmid><doi>10.1063/1.4821596</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2013-09, Vol.139 (11), p.115103-115103
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1437578249
source MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Alanine - chemistry
Glycine - chemistry
Hydrogen Bonding
Hydrophobic and Hydrophilic Interactions
Molecular Dynamics Simulation
Peptides - chemistry
Protein Structure, Secondary
Static Electricity
Thermodynamics
title Hydrophobic interactions and hydrogen bonds in β-sheet formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrophobic%20interactions%20and%20hydrogen%20bonds%20in%20%CE%B2-sheet%20formation&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Narayanan,%20Chitra&rft.date=2013-09-21&rft.volume=139&rft.issue=11&rft.spage=115103&rft.epage=115103&rft.pages=115103-115103&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4821596&rft_dat=%3Cproquest_cross%3E1437578249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437578249&rft_id=info:pmid/24070311&rfr_iscdi=true