Hydrophobic Collapse of Foldamer Capsules Drives Picomolar-Level Chloride Binding in Aqueous Acetonitrile Solutions

Aqueous media are competitive environments in which to perform host–guest chemistry, particularly when the guest is highly charged. While hydrophobic binding is a recognized approach to this challenge in which apolar pockets can be designed to recognize apolar guests in water, complementary strategi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Am. Chem. Soc 2013-09, Vol.135 (38), p.14401-14412
Hauptverfasser: Hua, Yuran, Liu, Yun, Chen, Chun-Hsing, Flood, Amar H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14412
container_issue 38
container_start_page 14401
container_title J. Am. Chem. Soc
container_volume 135
creator Hua, Yuran
Liu, Yun
Chen, Chun-Hsing
Flood, Amar H
description Aqueous media are competitive environments in which to perform host–guest chemistry, particularly when the guest is highly charged. While hydrophobic binding is a recognized approach to this challenge in which apolar pockets can be designed to recognize apolar guests in water, complementary strategies are required for hydrophilic anions like chloride. Here, we present evidence of such an alternative mechanism, used everyday by proteins yet rare for artificial receptors, wherein hydrophobic interactions are shown to be responsible for organizing and stabilizing an aryl-triazole foldamer to help extract hydrophilic chloride ions from increasingly aqueous solutions. Therein, a double-helical complex gains stability upon burial of ∼80% of the π surfaces that simultaneously creates a potent, solvent-excluding microenvironment for hydrogen bonding. The chloride’s overall affinity to the duplex is substantial in 25% water v/v in acetonitrile (log β2 = 12.6), and it remains strong (log β2 = 13.0) as the water content is increased to 50%. With the rise in predictable designs of abiological foldamers, this water-assisted strategy can, in principle, be utilized for binding other hydrophilic guests.
doi_str_mv 10.1021/ja4074744
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1437117834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1437117834</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-f18225d07455a2b627bcdffe26edd39bc18c76f754f4f072ad9e4e2d1c4b2dce3</originalsourceid><addsrcrecordid>eNptkU9r3DAQxUVoSTZpD_kCRRQC7cGpJEuW97hx86ewkEDbs5GlUVaLLG0lO5BvHy2b5pTTY4Yfj5n3EDqn5JISRn9sFSeSS86P0IIKRipBWfMBLQghrJJtU5-g05y3ZeSspcfohHHCWiHYAuW7Z5PibhMHp3EXvVe7DDhafBO9USMk3JXN7CHjn8k9FXlwOo7Rq1St4Qk87jY-JmcAX7lgXHjELuDVvxninPFKwxSDm5LzgH9HP08uhvwJfbTKZ_j8qmfo7831n-6uWt_f_upW60rVnE2VpS1jwpTPhFBsaJgctLEWWAPG1MtB01bLxkrBLbdEMmWWwIEZqvnAjIb6DH09-MY8uT5rN4He6BgC6KmnZClqyQv07QDtUixX56kfXdZQggj7F3rKa0mpbOs9-v2A6hRzTmD7XXKjSs_FrN8X0b8VUdgvr7bzMIJ5I_8nX4CLA6B07rdxTqFE8Y7RC0yFj9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437117834</pqid></control><display><type>article</type><title>Hydrophobic Collapse of Foldamer Capsules Drives Picomolar-Level Chloride Binding in Aqueous Acetonitrile Solutions</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Hua, Yuran ; Liu, Yun ; Chen, Chun-Hsing ; Flood, Amar H</creator><creatorcontrib>Hua, Yuran ; Liu, Yun ; Chen, Chun-Hsing ; Flood, Amar H ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Aqueous media are competitive environments in which to perform host–guest chemistry, particularly when the guest is highly charged. While hydrophobic binding is a recognized approach to this challenge in which apolar pockets can be designed to recognize apolar guests in water, complementary strategies are required for hydrophilic anions like chloride. Here, we present evidence of such an alternative mechanism, used everyday by proteins yet rare for artificial receptors, wherein hydrophobic interactions are shown to be responsible for organizing and stabilizing an aryl-triazole foldamer to help extract hydrophilic chloride ions from increasingly aqueous solutions. Therein, a double-helical complex gains stability upon burial of ∼80% of the π surfaces that simultaneously creates a potent, solvent-excluding microenvironment for hydrogen bonding. The chloride’s overall affinity to the duplex is substantial in 25% water v/v in acetonitrile (log β2 = 12.6), and it remains strong (log β2 = 13.0) as the water content is increased to 50%. With the rise in predictable designs of abiological foldamers, this water-assisted strategy can, in principle, be utilized for binding other hydrophilic guests.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja4074744</identifier><identifier>PMID: 24028552</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetonitriles - chemistry ; Anions ; Azo Compounds - chemistry ; Chlorides - chemistry ; Hydrophobic and Hydrophilic Interactions ; Molecular Conformation ; Receptors, Artificial - chemistry ; Solutions ; Thermodynamics ; Triazoles - chemistry ; Water - chemistry</subject><ispartof>J. Am. Chem. Soc, 2013-09, Vol.135 (38), p.14401-14412</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-f18225d07455a2b627bcdffe26edd39bc18c76f754f4f072ad9e4e2d1c4b2dce3</citedby><cites>FETCH-LOGICAL-a342t-f18225d07455a2b627bcdffe26edd39bc18c76f754f4f072ad9e4e2d1c4b2dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja4074744$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja4074744$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24028552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1095374$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Yuran</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Chen, Chun-Hsing</creatorcontrib><creatorcontrib>Flood, Amar H</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Hydrophobic Collapse of Foldamer Capsules Drives Picomolar-Level Chloride Binding in Aqueous Acetonitrile Solutions</title><title>J. Am. Chem. Soc</title><addtitle>J. Am. Chem. Soc</addtitle><description>Aqueous media are competitive environments in which to perform host–guest chemistry, particularly when the guest is highly charged. While hydrophobic binding is a recognized approach to this challenge in which apolar pockets can be designed to recognize apolar guests in water, complementary strategies are required for hydrophilic anions like chloride. Here, we present evidence of such an alternative mechanism, used everyday by proteins yet rare for artificial receptors, wherein hydrophobic interactions are shown to be responsible for organizing and stabilizing an aryl-triazole foldamer to help extract hydrophilic chloride ions from increasingly aqueous solutions. Therein, a double-helical complex gains stability upon burial of ∼80% of the π surfaces that simultaneously creates a potent, solvent-excluding microenvironment for hydrogen bonding. The chloride’s overall affinity to the duplex is substantial in 25% water v/v in acetonitrile (log β2 = 12.6), and it remains strong (log β2 = 13.0) as the water content is increased to 50%. With the rise in predictable designs of abiological foldamers, this water-assisted strategy can, in principle, be utilized for binding other hydrophilic guests.</description><subject>Acetonitriles - chemistry</subject><subject>Anions</subject><subject>Azo Compounds - chemistry</subject><subject>Chlorides - chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Molecular Conformation</subject><subject>Receptors, Artificial - chemistry</subject><subject>Solutions</subject><subject>Thermodynamics</subject><subject>Triazoles - chemistry</subject><subject>Water - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU9r3DAQxUVoSTZpD_kCRRQC7cGpJEuW97hx86ewkEDbs5GlUVaLLG0lO5BvHy2b5pTTY4Yfj5n3EDqn5JISRn9sFSeSS86P0IIKRipBWfMBLQghrJJtU5-g05y3ZeSspcfohHHCWiHYAuW7Z5PibhMHp3EXvVe7DDhafBO9USMk3JXN7CHjn8k9FXlwOo7Rq1St4Qk87jY-JmcAX7lgXHjELuDVvxninPFKwxSDm5LzgH9HP08uhvwJfbTKZ_j8qmfo7831n-6uWt_f_upW60rVnE2VpS1jwpTPhFBsaJgctLEWWAPG1MtB01bLxkrBLbdEMmWWwIEZqvnAjIb6DH09-MY8uT5rN4He6BgC6KmnZClqyQv07QDtUixX56kfXdZQggj7F3rKa0mpbOs9-v2A6hRzTmD7XXKjSs_FrN8X0b8VUdgvr7bzMIJ5I_8nX4CLA6B07rdxTqFE8Y7RC0yFj9w</recordid><startdate>20130925</startdate><enddate>20130925</enddate><creator>Hua, Yuran</creator><creator>Liu, Yun</creator><creator>Chen, Chun-Hsing</creator><creator>Flood, Amar H</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20130925</creationdate><title>Hydrophobic Collapse of Foldamer Capsules Drives Picomolar-Level Chloride Binding in Aqueous Acetonitrile Solutions</title><author>Hua, Yuran ; Liu, Yun ; Chen, Chun-Hsing ; Flood, Amar H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-f18225d07455a2b627bcdffe26edd39bc18c76f754f4f072ad9e4e2d1c4b2dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetonitriles - chemistry</topic><topic>Anions</topic><topic>Azo Compounds - chemistry</topic><topic>Chlorides - chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Molecular Conformation</topic><topic>Receptors, Artificial - chemistry</topic><topic>Solutions</topic><topic>Thermodynamics</topic><topic>Triazoles - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Yuran</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Chen, Chun-Hsing</creatorcontrib><creatorcontrib>Flood, Amar H</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>J. Am. Chem. Soc</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Yuran</au><au>Liu, Yun</au><au>Chen, Chun-Hsing</au><au>Flood, Amar H</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrophobic Collapse of Foldamer Capsules Drives Picomolar-Level Chloride Binding in Aqueous Acetonitrile Solutions</atitle><jtitle>J. Am. Chem. Soc</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-09-25</date><risdate>2013</risdate><volume>135</volume><issue>38</issue><spage>14401</spage><epage>14412</epage><pages>14401-14412</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Aqueous media are competitive environments in which to perform host–guest chemistry, particularly when the guest is highly charged. While hydrophobic binding is a recognized approach to this challenge in which apolar pockets can be designed to recognize apolar guests in water, complementary strategies are required for hydrophilic anions like chloride. Here, we present evidence of such an alternative mechanism, used everyday by proteins yet rare for artificial receptors, wherein hydrophobic interactions are shown to be responsible for organizing and stabilizing an aryl-triazole foldamer to help extract hydrophilic chloride ions from increasingly aqueous solutions. Therein, a double-helical complex gains stability upon burial of ∼80% of the π surfaces that simultaneously creates a potent, solvent-excluding microenvironment for hydrogen bonding. The chloride’s overall affinity to the duplex is substantial in 25% water v/v in acetonitrile (log β2 = 12.6), and it remains strong (log β2 = 13.0) as the water content is increased to 50%. With the rise in predictable designs of abiological foldamers, this water-assisted strategy can, in principle, be utilized for binding other hydrophilic guests.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24028552</pmid><doi>10.1021/ja4074744</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof J. Am. Chem. Soc, 2013-09, Vol.135 (38), p.14401-14412
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1437117834
source MEDLINE; American Chemical Society Journals
subjects Acetonitriles - chemistry
Anions
Azo Compounds - chemistry
Chlorides - chemistry
Hydrophobic and Hydrophilic Interactions
Molecular Conformation
Receptors, Artificial - chemistry
Solutions
Thermodynamics
Triazoles - chemistry
Water - chemistry
title Hydrophobic Collapse of Foldamer Capsules Drives Picomolar-Level Chloride Binding in Aqueous Acetonitrile Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrophobic%20Collapse%20of%20Foldamer%20Capsules%20Drives%20Picomolar-Level%20Chloride%20Binding%20in%20Aqueous%20Acetonitrile%20Solutions&rft.jtitle=J.%20Am.%20Chem.%20Soc&rft.au=Hua,%20Yuran&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2013-09-25&rft.volume=135&rft.issue=38&rft.spage=14401&rft.epage=14412&rft.pages=14401-14412&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja4074744&rft_dat=%3Cproquest_osti_%3E1437117834%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437117834&rft_id=info:pmid/24028552&rfr_iscdi=true