FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA
Financial practices often need to estimate an integrated volatility matrix of a large number of assets using noisy high-frequency data. Many existing estimators of a volatility matrix of small dimensions become inconsistent when the size of the matrix is close to or larger than the sample size. This...
Gespeichert in:
Veröffentlicht in: | Econometric theory 2013-08, Vol.29 (4), p.838-856 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 856 |
---|---|
container_issue | 4 |
container_start_page | 838 |
container_title | Econometric theory |
container_volume | 29 |
creator | Tao, Minjing Wang, Yazhen Chen, Xiaohong |
description | Financial practices often need to estimate an integrated volatility matrix of a large number of assets using noisy high-frequency data. Many existing estimators of a volatility matrix of small dimensions become inconsistent when the size of the matrix is close to or larger than the sample size. This paper introduces a new type of large volatility matrix estimator based on nonsynchronized high-frequency data, allowing for the presence of microstructure noise. When both the number of assets and the sample size go to infinity, we show that our new estimator is consistent and achieves a fast convergence rate, where the rate is optimal with respect to the sample size. A simulation study is conducted to check the finite sample performance of the proposed estimator. |
doi_str_mv | 10.1017/S0266466612000746 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1435358954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466612000746</cupid><jstor_id>23470068</jstor_id><sourcerecordid>23470068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-603dbe9e32cbec71c2ec2ca467205a8e643f0f1878981dbf9664d56d875102d53</originalsourceid><addsrcrecordid>eNp1kEuL2zAUhcXQQtN0fkAXA4JuunF79baXwnUcgcdhYieQlfFDHhKSeGoli_n3VUgYSsusxNX5zpHuQegrgR8EiPpZAJWSSykJBQDF5R2aEC6jgDMJH9DkIgcX_RP67NwOgNBIsQlqZroocbzI18kyTfI4wUtdJgU2OU6K0jzq0uQpzrQX8XqR-TEz5Qb7-6WJPbcqLvrcpPNgtkyeVj5ig2cm13lsdIZ_6VJ_QR_7eu_s_e2cotUsKeN5kC1SE-ssaIWAUyCBdY2NLKNtY1tFWmpb2tZcKgqiDq3krIeehCqMQtI1feT37YTsQiUI0E6wKfp-zX0Zh99n607VYetau9_XRzucXUU4E0yEkeAe_fYPuhvO49H_zlPEV6goZ54iV6odB-dG21cv4_ZQj68VgerSevVf697zcPXs3GkY3wyUcQUgQ6-zW2Z9aMZt92z_evrd1D9Uk4Mr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411207243</pqid></control><display><type>article</type><title>FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA</title><source>Cambridge Journals Online</source><source>JSTOR</source><creator>Tao, Minjing ; Wang, Yazhen ; Chen, Xiaohong</creator><creatorcontrib>Tao, Minjing ; Wang, Yazhen ; Chen, Xiaohong</creatorcontrib><description>Financial practices often need to estimate an integrated volatility matrix of a large number of assets using noisy high-frequency data. Many existing estimators of a volatility matrix of small dimensions become inconsistent when the size of the matrix is close to or larger than the sample size. This paper introduces a new type of large volatility matrix estimator based on nonsynchronized high-frequency data, allowing for the presence of microstructure noise. When both the number of assets and the sample size go to infinity, we show that our new estimator is consistent and achieves a fast convergence rate, where the rate is optimal with respect to the sample size. A simulation study is conducted to check the finite sample performance of the proposed estimator.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466612000746</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Assets ; Consistent estimators ; Convergence ; Covariance ; Data processing ; Econometrics ; Economic models ; Economic theory ; Eigenvalues ; Estimating techniques ; Estimators ; Finance ; Frequency ; Matrices ; Noise ; Perceptron convergence procedure ; Prices ; Random variables ; Sample size ; Samples ; Simulation ; Simulations ; Statistical estimation ; Studies ; Volatility</subject><ispartof>Econometric theory, 2013-08, Vol.29 (4), p.838-856</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>Cambridge University Press 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-603dbe9e32cbec71c2ec2ca467205a8e643f0f1878981dbf9664d56d875102d53</citedby><cites>FETCH-LOGICAL-c550t-603dbe9e32cbec71c2ec2ca467205a8e643f0f1878981dbf9664d56d875102d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23470068$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466612000746/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,27924,27925,55628,58017,58250</link.rule.ids></links><search><creatorcontrib>Tao, Minjing</creatorcontrib><creatorcontrib>Wang, Yazhen</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><title>FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>Financial practices often need to estimate an integrated volatility matrix of a large number of assets using noisy high-frequency data. Many existing estimators of a volatility matrix of small dimensions become inconsistent when the size of the matrix is close to or larger than the sample size. This paper introduces a new type of large volatility matrix estimator based on nonsynchronized high-frequency data, allowing for the presence of microstructure noise. When both the number of assets and the sample size go to infinity, we show that our new estimator is consistent and achieves a fast convergence rate, where the rate is optimal with respect to the sample size. A simulation study is conducted to check the finite sample performance of the proposed estimator.</description><subject>Assets</subject><subject>Consistent estimators</subject><subject>Convergence</subject><subject>Covariance</subject><subject>Data processing</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Eigenvalues</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Finance</subject><subject>Frequency</subject><subject>Matrices</subject><subject>Noise</subject><subject>Perceptron convergence procedure</subject><subject>Prices</subject><subject>Random variables</subject><subject>Sample size</subject><subject>Samples</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Statistical estimation</subject><subject>Studies</subject><subject>Volatility</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEuL2zAUhcXQQtN0fkAXA4JuunF79baXwnUcgcdhYieQlfFDHhKSeGoli_n3VUgYSsusxNX5zpHuQegrgR8EiPpZAJWSSykJBQDF5R2aEC6jgDMJH9DkIgcX_RP67NwOgNBIsQlqZroocbzI18kyTfI4wUtdJgU2OU6K0jzq0uQpzrQX8XqR-TEz5Qb7-6WJPbcqLvrcpPNgtkyeVj5ig2cm13lsdIZ_6VJ_QR_7eu_s_e2cotUsKeN5kC1SE-ssaIWAUyCBdY2NLKNtY1tFWmpb2tZcKgqiDq3krIeehCqMQtI1feT37YTsQiUI0E6wKfp-zX0Zh99n607VYetau9_XRzucXUU4E0yEkeAe_fYPuhvO49H_zlPEV6goZ54iV6odB-dG21cv4_ZQj68VgerSevVf697zcPXs3GkY3wyUcQUgQ6-zW2Z9aMZt92z_evrd1D9Uk4Mr</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Tao, Minjing</creator><creator>Wang, Yazhen</creator><creator>Chen, Xiaohong</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130801</creationdate><title>FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA</title><author>Tao, Minjing ; Wang, Yazhen ; Chen, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-603dbe9e32cbec71c2ec2ca467205a8e643f0f1878981dbf9664d56d875102d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Assets</topic><topic>Consistent estimators</topic><topic>Convergence</topic><topic>Covariance</topic><topic>Data processing</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Eigenvalues</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Finance</topic><topic>Frequency</topic><topic>Matrices</topic><topic>Noise</topic><topic>Perceptron convergence procedure</topic><topic>Prices</topic><topic>Random variables</topic><topic>Sample size</topic><topic>Samples</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Statistical estimation</topic><topic>Studies</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Minjing</creatorcontrib><creatorcontrib>Wang, Yazhen</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Minjing</au><au>Wang, Yazhen</au><au>Chen, Xiaohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>29</volume><issue>4</issue><spage>838</spage><epage>856</epage><pages>838-856</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>Financial practices often need to estimate an integrated volatility matrix of a large number of assets using noisy high-frequency data. Many existing estimators of a volatility matrix of small dimensions become inconsistent when the size of the matrix is close to or larger than the sample size. This paper introduces a new type of large volatility matrix estimator based on nonsynchronized high-frequency data, allowing for the presence of microstructure noise. When both the number of assets and the sample size go to infinity, we show that our new estimator is consistent and achieves a fast convergence rate, where the rate is optimal with respect to the sample size. A simulation study is conducted to check the finite sample performance of the proposed estimator.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466612000746</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4666 |
ispartof | Econometric theory, 2013-08, Vol.29 (4), p.838-856 |
issn | 0266-4666 1469-4360 |
language | eng |
recordid | cdi_proquest_miscellaneous_1435358954 |
source | Cambridge Journals Online; JSTOR |
subjects | Assets Consistent estimators Convergence Covariance Data processing Econometrics Economic models Economic theory Eigenvalues Estimating techniques Estimators Finance Frequency Matrices Noise Perceptron convergence procedure Prices Random variables Sample size Samples Simulation Simulations Statistical estimation Studies Volatility |
title | FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAST%20CONVERGENCE%20RATES%20IN%20ESTIMATING%20LARGE%20VOLATILITY%20MATRICES%20USING%20HIGH-FREQUENCY%20FINANCIAL%20DATA&rft.jtitle=Econometric%20theory&rft.au=Tao,%20Minjing&rft.date=2013-08-01&rft.volume=29&rft.issue=4&rft.spage=838&rft.epage=856&rft.pages=838-856&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466612000746&rft_dat=%3Cjstor_proqu%3E23470068%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1411207243&rft_id=info:pmid/&rft_cupid=10_1017_S0266466612000746&rft_jstor_id=23470068&rfr_iscdi=true |