FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA

Financial practices often need to estimate an integrated volatility matrix of a large number of assets using noisy high-frequency data. Many existing estimators of a volatility matrix of small dimensions become inconsistent when the size of the matrix is close to or larger than the sample size. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2013-08, Vol.29 (4), p.838-856
Hauptverfasser: Tao, Minjing, Wang, Yazhen, Chen, Xiaohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 856
container_issue 4
container_start_page 838
container_title Econometric theory
container_volume 29
creator Tao, Minjing
Wang, Yazhen
Chen, Xiaohong
description Financial practices often need to estimate an integrated volatility matrix of a large number of assets using noisy high-frequency data. Many existing estimators of a volatility matrix of small dimensions become inconsistent when the size of the matrix is close to or larger than the sample size. This paper introduces a new type of large volatility matrix estimator based on nonsynchronized high-frequency data, allowing for the presence of microstructure noise. When both the number of assets and the sample size go to infinity, we show that our new estimator is consistent and achieves a fast convergence rate, where the rate is optimal with respect to the sample size. A simulation study is conducted to check the finite sample performance of the proposed estimator.
doi_str_mv 10.1017/S0266466612000746
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1435358954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466612000746</cupid><jstor_id>23470068</jstor_id><sourcerecordid>23470068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-603dbe9e32cbec71c2ec2ca467205a8e643f0f1878981dbf9664d56d875102d53</originalsourceid><addsrcrecordid>eNp1kEuL2zAUhcXQQtN0fkAXA4JuunF79baXwnUcgcdhYieQlfFDHhKSeGoli_n3VUgYSsusxNX5zpHuQegrgR8EiPpZAJWSSykJBQDF5R2aEC6jgDMJH9DkIgcX_RP67NwOgNBIsQlqZroocbzI18kyTfI4wUtdJgU2OU6K0jzq0uQpzrQX8XqR-TEz5Qb7-6WJPbcqLvrcpPNgtkyeVj5ig2cm13lsdIZ_6VJ_QR_7eu_s_e2cotUsKeN5kC1SE-ssaIWAUyCBdY2NLKNtY1tFWmpb2tZcKgqiDq3krIeehCqMQtI1feT37YTsQiUI0E6wKfp-zX0Zh99n607VYetau9_XRzucXUU4E0yEkeAe_fYPuhvO49H_zlPEV6goZ54iV6odB-dG21cv4_ZQj68VgerSevVf697zcPXs3GkY3wyUcQUgQ6-zW2Z9aMZt92z_evrd1D9Uk4Mr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411207243</pqid></control><display><type>article</type><title>FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA</title><source>Cambridge Journals Online</source><source>JSTOR</source><creator>Tao, Minjing ; Wang, Yazhen ; Chen, Xiaohong</creator><creatorcontrib>Tao, Minjing ; Wang, Yazhen ; Chen, Xiaohong</creatorcontrib><description>Financial practices often need to estimate an integrated volatility matrix of a large number of assets using noisy high-frequency data. Many existing estimators of a volatility matrix of small dimensions become inconsistent when the size of the matrix is close to or larger than the sample size. This paper introduces a new type of large volatility matrix estimator based on nonsynchronized high-frequency data, allowing for the presence of microstructure noise. When both the number of assets and the sample size go to infinity, we show that our new estimator is consistent and achieves a fast convergence rate, where the rate is optimal with respect to the sample size. A simulation study is conducted to check the finite sample performance of the proposed estimator.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466612000746</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Assets ; Consistent estimators ; Convergence ; Covariance ; Data processing ; Econometrics ; Economic models ; Economic theory ; Eigenvalues ; Estimating techniques ; Estimators ; Finance ; Frequency ; Matrices ; Noise ; Perceptron convergence procedure ; Prices ; Random variables ; Sample size ; Samples ; Simulation ; Simulations ; Statistical estimation ; Studies ; Volatility</subject><ispartof>Econometric theory, 2013-08, Vol.29 (4), p.838-856</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>Cambridge University Press 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-603dbe9e32cbec71c2ec2ca467205a8e643f0f1878981dbf9664d56d875102d53</citedby><cites>FETCH-LOGICAL-c550t-603dbe9e32cbec71c2ec2ca467205a8e643f0f1878981dbf9664d56d875102d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23470068$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466612000746/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,27924,27925,55628,58017,58250</link.rule.ids></links><search><creatorcontrib>Tao, Minjing</creatorcontrib><creatorcontrib>Wang, Yazhen</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><title>FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>Financial practices often need to estimate an integrated volatility matrix of a large number of assets using noisy high-frequency data. Many existing estimators of a volatility matrix of small dimensions become inconsistent when the size of the matrix is close to or larger than the sample size. This paper introduces a new type of large volatility matrix estimator based on nonsynchronized high-frequency data, allowing for the presence of microstructure noise. When both the number of assets and the sample size go to infinity, we show that our new estimator is consistent and achieves a fast convergence rate, where the rate is optimal with respect to the sample size. A simulation study is conducted to check the finite sample performance of the proposed estimator.</description><subject>Assets</subject><subject>Consistent estimators</subject><subject>Convergence</subject><subject>Covariance</subject><subject>Data processing</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Eigenvalues</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Finance</subject><subject>Frequency</subject><subject>Matrices</subject><subject>Noise</subject><subject>Perceptron convergence procedure</subject><subject>Prices</subject><subject>Random variables</subject><subject>Sample size</subject><subject>Samples</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Statistical estimation</subject><subject>Studies</subject><subject>Volatility</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEuL2zAUhcXQQtN0fkAXA4JuunF79baXwnUcgcdhYieQlfFDHhKSeGoli_n3VUgYSsusxNX5zpHuQegrgR8EiPpZAJWSSykJBQDF5R2aEC6jgDMJH9DkIgcX_RP67NwOgNBIsQlqZroocbzI18kyTfI4wUtdJgU2OU6K0jzq0uQpzrQX8XqR-TEz5Qb7-6WJPbcqLvrcpPNgtkyeVj5ig2cm13lsdIZ_6VJ_QR_7eu_s_e2cotUsKeN5kC1SE-ssaIWAUyCBdY2NLKNtY1tFWmpb2tZcKgqiDq3krIeehCqMQtI1feT37YTsQiUI0E6wKfp-zX0Zh99n607VYetau9_XRzucXUU4E0yEkeAe_fYPuhvO49H_zlPEV6goZ54iV6odB-dG21cv4_ZQj68VgerSevVf697zcPXs3GkY3wyUcQUgQ6-zW2Z9aMZt92z_evrd1D9Uk4Mr</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Tao, Minjing</creator><creator>Wang, Yazhen</creator><creator>Chen, Xiaohong</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130801</creationdate><title>FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA</title><author>Tao, Minjing ; Wang, Yazhen ; Chen, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-603dbe9e32cbec71c2ec2ca467205a8e643f0f1878981dbf9664d56d875102d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Assets</topic><topic>Consistent estimators</topic><topic>Convergence</topic><topic>Covariance</topic><topic>Data processing</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Eigenvalues</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Finance</topic><topic>Frequency</topic><topic>Matrices</topic><topic>Noise</topic><topic>Perceptron convergence procedure</topic><topic>Prices</topic><topic>Random variables</topic><topic>Sample size</topic><topic>Samples</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Statistical estimation</topic><topic>Studies</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Minjing</creatorcontrib><creatorcontrib>Wang, Yazhen</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Minjing</au><au>Wang, Yazhen</au><au>Chen, Xiaohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>29</volume><issue>4</issue><spage>838</spage><epage>856</epage><pages>838-856</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>Financial practices often need to estimate an integrated volatility matrix of a large number of assets using noisy high-frequency data. Many existing estimators of a volatility matrix of small dimensions become inconsistent when the size of the matrix is close to or larger than the sample size. This paper introduces a new type of large volatility matrix estimator based on nonsynchronized high-frequency data, allowing for the presence of microstructure noise. When both the number of assets and the sample size go to infinity, we show that our new estimator is consistent and achieves a fast convergence rate, where the rate is optimal with respect to the sample size. A simulation study is conducted to check the finite sample performance of the proposed estimator.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466612000746</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4666
ispartof Econometric theory, 2013-08, Vol.29 (4), p.838-856
issn 0266-4666
1469-4360
language eng
recordid cdi_proquest_miscellaneous_1435358954
source Cambridge Journals Online; JSTOR
subjects Assets
Consistent estimators
Convergence
Covariance
Data processing
Econometrics
Economic models
Economic theory
Eigenvalues
Estimating techniques
Estimators
Finance
Frequency
Matrices
Noise
Perceptron convergence procedure
Prices
Random variables
Sample size
Samples
Simulation
Simulations
Statistical estimation
Studies
Volatility
title FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAST%20CONVERGENCE%20RATES%20IN%20ESTIMATING%20LARGE%20VOLATILITY%20MATRICES%20USING%20HIGH-FREQUENCY%20FINANCIAL%20DATA&rft.jtitle=Econometric%20theory&rft.au=Tao,%20Minjing&rft.date=2013-08-01&rft.volume=29&rft.issue=4&rft.spage=838&rft.epage=856&rft.pages=838-856&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466612000746&rft_dat=%3Cjstor_proqu%3E23470068%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1411207243&rft_id=info:pmid/&rft_cupid=10_1017_S0266466612000746&rft_jstor_id=23470068&rfr_iscdi=true