Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis
On average, an end‐stage renal disease patient will undergo hemodialysis (HD) three or four times a week for 4–5 h per session. Any minor imperfection in the extracorporeal system may become significant in the treatment of these patients due to the cumulative exposure time. Recently, air traps (a sa...
Gespeichert in:
Veröffentlicht in: | Artificial organs 2013-08, Vol.37 (8), p.E139-E144 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E144 |
---|---|
container_issue | 8 |
container_start_page | E139 |
container_title | Artificial organs |
container_volume | 37 |
creator | Keshavarzi, Gholamreza Barber, Tracie J. Yeoh, Guan Simmons, Anne Reizes, John A. |
description | On average, an end‐stage renal disease patient will undergo hemodialysis (HD) three or four times a week for 4–5 h per session. Any minor imperfection in the extracorporeal system may become significant in the treatment of these patients due to the cumulative exposure time. Recently, air traps (a safety feature of dialysis systems) have been reported to be inadequate in detecting microbubbles and may even create them. Microbubbles have been linked to lung injuries and damage to the brain in chronic HD patients; therefore the significance of microbubbles has been revisited. Bubbles may originate at the vascular access sites, sites of local turbulent blood flow, the air trap, or in the bloodlines after priming with saline prior to use. In this paper, computational fluid dynamics is used to model blood flow in the air trap to determine the likely mechanisms of microbubble dynamics. The results indicate that almost all bubbles with diameters less than 50 μm and most of the bubbles of 50–200 μm pass through the air trap. Consequently, the common air traps are not effective in removing bubbles less than 200 μm in diameter. |
doi_str_mv | 10.1111/aor.12110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434035810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1426006894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4240-570df9378aa6a09671209ec060156e0f23b89ec4766fc3def62aff91cf6dcb9f3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoun4c_ANS8KKHrpOPTtvjsuoqrB-IoreQtglE283abNH990arexAEA5NhmGdeknkJ2acwpOGcKNcOKaMU1siAJiyJaZKLdTIAihAnKJ62yLb3zwCQCsBNssV4xhAzHJDz-zcXn9pGz7x1M1VHY9fMu4Va9NUoXEtvfeRMdGXL1hVdUdTaR3YWXejGVbbv75INo2qv977zDnk4P7sfX8TTm8nleDSNS8FEeEsKlcl5mimFCnJMKYNcl4BAE9RgGC-yUIsU0ZS80gaZMianpcGqLHLDd8hRrztv3Wun_UI21pe6rtVMu85LKrgAnmQU_oEyBMAsFwE9_IU-u64NX_-iQEAIGqjjngpr8L7VRs5b26h2KSnITx9k8EF--RDYg2_Frmh0tSJ_Fh-Akx54s7Ve_q0kRzd3P5JxP2H9Qr-vJlT7IjHlaSIfrydymgsYT05B3vIPTX-fFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1420402041</pqid></control><display><type>article</type><title>Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Keshavarzi, Gholamreza ; Barber, Tracie J. ; Yeoh, Guan ; Simmons, Anne ; Reizes, John A.</creator><creatorcontrib>Keshavarzi, Gholamreza ; Barber, Tracie J. ; Yeoh, Guan ; Simmons, Anne ; Reizes, John A.</creatorcontrib><description>On average, an end‐stage renal disease patient will undergo hemodialysis (HD) three or four times a week for 4–5 h per session. Any minor imperfection in the extracorporeal system may become significant in the treatment of these patients due to the cumulative exposure time. Recently, air traps (a safety feature of dialysis systems) have been reported to be inadequate in detecting microbubbles and may even create them. Microbubbles have been linked to lung injuries and damage to the brain in chronic HD patients; therefore the significance of microbubbles has been revisited. Bubbles may originate at the vascular access sites, sites of local turbulent blood flow, the air trap, or in the bloodlines after priming with saline prior to use. In this paper, computational fluid dynamics is used to model blood flow in the air trap to determine the likely mechanisms of microbubble dynamics. The results indicate that almost all bubbles with diameters less than 50 μm and most of the bubbles of 50–200 μm pass through the air trap. Consequently, the common air traps are not effective in removing bubbles less than 200 μm in diameter.</description><identifier>ISSN: 0160-564X</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1111/aor.12110</identifier><identifier>PMID: 23826686</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Air trap ; Computational fluid dynamics ; Computer Simulation ; Hemodialysis ; Humans ; Hydrodynamics ; Microbubble ; Microbubbles - adverse effects ; Models, Chemical ; Renal Dialysis - adverse effects ; Renal Dialysis - instrumentation</subject><ispartof>Artificial organs, 2013-08, Vol.37 (8), p.E139-E144</ispartof><rights>2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation</rights><rights>2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.</rights><rights>2013 Wiley Periodicals, Inc. and International Center for Artifi cial Organs and Transplantation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4240-570df9378aa6a09671209ec060156e0f23b89ec4766fc3def62aff91cf6dcb9f3</citedby><cites>FETCH-LOGICAL-c4240-570df9378aa6a09671209ec060156e0f23b89ec4766fc3def62aff91cf6dcb9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Faor.12110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Faor.12110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23826686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keshavarzi, Gholamreza</creatorcontrib><creatorcontrib>Barber, Tracie J.</creatorcontrib><creatorcontrib>Yeoh, Guan</creatorcontrib><creatorcontrib>Simmons, Anne</creatorcontrib><creatorcontrib>Reizes, John A.</creatorcontrib><title>Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis</title><title>Artificial organs</title><addtitle>Artificial Organs</addtitle><description>On average, an end‐stage renal disease patient will undergo hemodialysis (HD) three or four times a week for 4–5 h per session. Any minor imperfection in the extracorporeal system may become significant in the treatment of these patients due to the cumulative exposure time. Recently, air traps (a safety feature of dialysis systems) have been reported to be inadequate in detecting microbubbles and may even create them. Microbubbles have been linked to lung injuries and damage to the brain in chronic HD patients; therefore the significance of microbubbles has been revisited. Bubbles may originate at the vascular access sites, sites of local turbulent blood flow, the air trap, or in the bloodlines after priming with saline prior to use. In this paper, computational fluid dynamics is used to model blood flow in the air trap to determine the likely mechanisms of microbubble dynamics. The results indicate that almost all bubbles with diameters less than 50 μm and most of the bubbles of 50–200 μm pass through the air trap. Consequently, the common air traps are not effective in removing bubbles less than 200 μm in diameter.</description><subject>Air trap</subject><subject>Computational fluid dynamics</subject><subject>Computer Simulation</subject><subject>Hemodialysis</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Microbubble</subject><subject>Microbubbles - adverse effects</subject><subject>Models, Chemical</subject><subject>Renal Dialysis - adverse effects</subject><subject>Renal Dialysis - instrumentation</subject><issn>0160-564X</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LxDAQhoMoun4c_ANS8KKHrpOPTtvjsuoqrB-IoreQtglE283abNH990arexAEA5NhmGdeknkJ2acwpOGcKNcOKaMU1siAJiyJaZKLdTIAihAnKJ62yLb3zwCQCsBNssV4xhAzHJDz-zcXn9pGz7x1M1VHY9fMu4Va9NUoXEtvfeRMdGXL1hVdUdTaR3YWXejGVbbv75INo2qv977zDnk4P7sfX8TTm8nleDSNS8FEeEsKlcl5mimFCnJMKYNcl4BAE9RgGC-yUIsU0ZS80gaZMianpcGqLHLDd8hRrztv3Wun_UI21pe6rtVMu85LKrgAnmQU_oEyBMAsFwE9_IU-u64NX_-iQEAIGqjjngpr8L7VRs5b26h2KSnITx9k8EF--RDYg2_Frmh0tSJ_Fh-Akx54s7Ve_q0kRzd3P5JxP2H9Qr-vJlT7IjHlaSIfrydymgsYT05B3vIPTX-fFQ</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Keshavarzi, Gholamreza</creator><creator>Barber, Tracie J.</creator><creator>Yeoh, Guan</creator><creator>Simmons, Anne</creator><creator>Reizes, John A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201308</creationdate><title>Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis</title><author>Keshavarzi, Gholamreza ; Barber, Tracie J. ; Yeoh, Guan ; Simmons, Anne ; Reizes, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4240-570df9378aa6a09671209ec060156e0f23b89ec4766fc3def62aff91cf6dcb9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Air trap</topic><topic>Computational fluid dynamics</topic><topic>Computer Simulation</topic><topic>Hemodialysis</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Microbubble</topic><topic>Microbubbles - adverse effects</topic><topic>Models, Chemical</topic><topic>Renal Dialysis - adverse effects</topic><topic>Renal Dialysis - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keshavarzi, Gholamreza</creatorcontrib><creatorcontrib>Barber, Tracie J.</creatorcontrib><creatorcontrib>Yeoh, Guan</creatorcontrib><creatorcontrib>Simmons, Anne</creatorcontrib><creatorcontrib>Reizes, John A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keshavarzi, Gholamreza</au><au>Barber, Tracie J.</au><au>Yeoh, Guan</au><au>Simmons, Anne</au><au>Reizes, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis</atitle><jtitle>Artificial organs</jtitle><addtitle>Artificial Organs</addtitle><date>2013-08</date><risdate>2013</risdate><volume>37</volume><issue>8</issue><spage>E139</spage><epage>E144</epage><pages>E139-E144</pages><issn>0160-564X</issn><eissn>1525-1594</eissn><abstract>On average, an end‐stage renal disease patient will undergo hemodialysis (HD) three or four times a week for 4–5 h per session. Any minor imperfection in the extracorporeal system may become significant in the treatment of these patients due to the cumulative exposure time. Recently, air traps (a safety feature of dialysis systems) have been reported to be inadequate in detecting microbubbles and may even create them. Microbubbles have been linked to lung injuries and damage to the brain in chronic HD patients; therefore the significance of microbubbles has been revisited. Bubbles may originate at the vascular access sites, sites of local turbulent blood flow, the air trap, or in the bloodlines after priming with saline prior to use. In this paper, computational fluid dynamics is used to model blood flow in the air trap to determine the likely mechanisms of microbubble dynamics. The results indicate that almost all bubbles with diameters less than 50 μm and most of the bubbles of 50–200 μm pass through the air trap. Consequently, the common air traps are not effective in removing bubbles less than 200 μm in diameter.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23826686</pmid><doi>10.1111/aor.12110</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0160-564X |
ispartof | Artificial organs, 2013-08, Vol.37 (8), p.E139-E144 |
issn | 0160-564X 1525-1594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1434035810 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Air trap Computational fluid dynamics Computer Simulation Hemodialysis Humans Hydrodynamics Microbubble Microbubbles - adverse effects Models, Chemical Renal Dialysis - adverse effects Renal Dialysis - instrumentation |
title | Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Computational%20Analysis%20of%20Microbubbles%20in%20Hemodialysis&rft.jtitle=Artificial%20organs&rft.au=Keshavarzi,%20Gholamreza&rft.date=2013-08&rft.volume=37&rft.issue=8&rft.spage=E139&rft.epage=E144&rft.pages=E139-E144&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1111/aor.12110&rft_dat=%3Cproquest_cross%3E1426006894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1420402041&rft_id=info:pmid/23826686&rfr_iscdi=true |