Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis

On average, an end‐stage renal disease patient will undergo hemodialysis (HD) three or four times a week for 4–5 h per session. Any minor imperfection in the extracorporeal system may become significant in the treatment of these patients due to the cumulative exposure time. Recently, air traps (a sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial organs 2013-08, Vol.37 (8), p.E139-E144
Hauptverfasser: Keshavarzi, Gholamreza, Barber, Tracie J., Yeoh, Guan, Simmons, Anne, Reizes, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E144
container_issue 8
container_start_page E139
container_title Artificial organs
container_volume 37
creator Keshavarzi, Gholamreza
Barber, Tracie J.
Yeoh, Guan
Simmons, Anne
Reizes, John A.
description On average, an end‐stage renal disease patient will undergo hemodialysis (HD) three or four times a week for 4–5 h per session. Any minor imperfection in the extracorporeal system may become significant in the treatment of these patients due to the cumulative exposure time. Recently, air traps (a safety feature of dialysis systems) have been reported to be inadequate in detecting microbubbles and may even create them. Microbubbles have been linked to lung injuries and damage to the brain in chronic HD patients; therefore the significance of microbubbles has been revisited. Bubbles may originate at the vascular access sites, sites of local turbulent blood flow, the air trap, or in the bloodlines after priming with saline prior to use. In this paper, computational fluid dynamics is used to model blood flow in the air trap to determine the likely mechanisms of microbubble dynamics. The results indicate that almost all bubbles with diameters less than 50 μm and most of the bubbles of 50–200 μm pass through the air trap. Consequently, the common air traps are not effective in removing bubbles less than 200 μm in diameter.
doi_str_mv 10.1111/aor.12110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434035810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1426006894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4240-570df9378aa6a09671209ec060156e0f23b89ec4766fc3def62aff91cf6dcb9f3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoun4c_ANS8KKHrpOPTtvjsuoqrB-IoreQtglE283abNH990arexAEA5NhmGdeknkJ2acwpOGcKNcOKaMU1siAJiyJaZKLdTIAihAnKJ62yLb3zwCQCsBNssV4xhAzHJDz-zcXn9pGz7x1M1VHY9fMu4Va9NUoXEtvfeRMdGXL1hVdUdTaR3YWXejGVbbv75INo2qv977zDnk4P7sfX8TTm8nleDSNS8FEeEsKlcl5mimFCnJMKYNcl4BAE9RgGC-yUIsU0ZS80gaZMianpcGqLHLDd8hRrztv3Wun_UI21pe6rtVMu85LKrgAnmQU_oEyBMAsFwE9_IU-u64NX_-iQEAIGqjjngpr8L7VRs5b26h2KSnITx9k8EF--RDYg2_Frmh0tSJ_Fh-Akx54s7Ve_q0kRzd3P5JxP2H9Qr-vJlT7IjHlaSIfrydymgsYT05B3vIPTX-fFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1420402041</pqid></control><display><type>article</type><title>Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Keshavarzi, Gholamreza ; Barber, Tracie J. ; Yeoh, Guan ; Simmons, Anne ; Reizes, John A.</creator><creatorcontrib>Keshavarzi, Gholamreza ; Barber, Tracie J. ; Yeoh, Guan ; Simmons, Anne ; Reizes, John A.</creatorcontrib><description>On average, an end‐stage renal disease patient will undergo hemodialysis (HD) three or four times a week for 4–5 h per session. Any minor imperfection in the extracorporeal system may become significant in the treatment of these patients due to the cumulative exposure time. Recently, air traps (a safety feature of dialysis systems) have been reported to be inadequate in detecting microbubbles and may even create them. Microbubbles have been linked to lung injuries and damage to the brain in chronic HD patients; therefore the significance of microbubbles has been revisited. Bubbles may originate at the vascular access sites, sites of local turbulent blood flow, the air trap, or in the bloodlines after priming with saline prior to use. In this paper, computational fluid dynamics is used to model blood flow in the air trap to determine the likely mechanisms of microbubble dynamics. The results indicate that almost all bubbles with diameters less than 50 μm and most of the bubbles of 50–200 μm pass through the air trap. Consequently, the common air traps are not effective in removing bubbles less than 200 μm in diameter.</description><identifier>ISSN: 0160-564X</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1111/aor.12110</identifier><identifier>PMID: 23826686</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Air trap ; Computational fluid dynamics ; Computer Simulation ; Hemodialysis ; Humans ; Hydrodynamics ; Microbubble ; Microbubbles - adverse effects ; Models, Chemical ; Renal Dialysis - adverse effects ; Renal Dialysis - instrumentation</subject><ispartof>Artificial organs, 2013-08, Vol.37 (8), p.E139-E144</ispartof><rights>2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation</rights><rights>2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.</rights><rights>2013 Wiley Periodicals, Inc. and International Center for Artifi cial Organs and Transplantation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4240-570df9378aa6a09671209ec060156e0f23b89ec4766fc3def62aff91cf6dcb9f3</citedby><cites>FETCH-LOGICAL-c4240-570df9378aa6a09671209ec060156e0f23b89ec4766fc3def62aff91cf6dcb9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Faor.12110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Faor.12110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23826686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keshavarzi, Gholamreza</creatorcontrib><creatorcontrib>Barber, Tracie J.</creatorcontrib><creatorcontrib>Yeoh, Guan</creatorcontrib><creatorcontrib>Simmons, Anne</creatorcontrib><creatorcontrib>Reizes, John A.</creatorcontrib><title>Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis</title><title>Artificial organs</title><addtitle>Artificial Organs</addtitle><description>On average, an end‐stage renal disease patient will undergo hemodialysis (HD) three or four times a week for 4–5 h per session. Any minor imperfection in the extracorporeal system may become significant in the treatment of these patients due to the cumulative exposure time. Recently, air traps (a safety feature of dialysis systems) have been reported to be inadequate in detecting microbubbles and may even create them. Microbubbles have been linked to lung injuries and damage to the brain in chronic HD patients; therefore the significance of microbubbles has been revisited. Bubbles may originate at the vascular access sites, sites of local turbulent blood flow, the air trap, or in the bloodlines after priming with saline prior to use. In this paper, computational fluid dynamics is used to model blood flow in the air trap to determine the likely mechanisms of microbubble dynamics. The results indicate that almost all bubbles with diameters less than 50 μm and most of the bubbles of 50–200 μm pass through the air trap. Consequently, the common air traps are not effective in removing bubbles less than 200 μm in diameter.</description><subject>Air trap</subject><subject>Computational fluid dynamics</subject><subject>Computer Simulation</subject><subject>Hemodialysis</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Microbubble</subject><subject>Microbubbles - adverse effects</subject><subject>Models, Chemical</subject><subject>Renal Dialysis - adverse effects</subject><subject>Renal Dialysis - instrumentation</subject><issn>0160-564X</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LxDAQhoMoun4c_ANS8KKHrpOPTtvjsuoqrB-IoreQtglE283abNH990arexAEA5NhmGdeknkJ2acwpOGcKNcOKaMU1siAJiyJaZKLdTIAihAnKJ62yLb3zwCQCsBNssV4xhAzHJDz-zcXn9pGz7x1M1VHY9fMu4Va9NUoXEtvfeRMdGXL1hVdUdTaR3YWXejGVbbv75INo2qv977zDnk4P7sfX8TTm8nleDSNS8FEeEsKlcl5mimFCnJMKYNcl4BAE9RgGC-yUIsU0ZS80gaZMianpcGqLHLDd8hRrztv3Wun_UI21pe6rtVMu85LKrgAnmQU_oEyBMAsFwE9_IU-u64NX_-iQEAIGqjjngpr8L7VRs5b26h2KSnITx9k8EF--RDYg2_Frmh0tSJ_Fh-Akx54s7Ve_q0kRzd3P5JxP2H9Qr-vJlT7IjHlaSIfrydymgsYT05B3vIPTX-fFQ</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Keshavarzi, Gholamreza</creator><creator>Barber, Tracie J.</creator><creator>Yeoh, Guan</creator><creator>Simmons, Anne</creator><creator>Reizes, John A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201308</creationdate><title>Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis</title><author>Keshavarzi, Gholamreza ; Barber, Tracie J. ; Yeoh, Guan ; Simmons, Anne ; Reizes, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4240-570df9378aa6a09671209ec060156e0f23b89ec4766fc3def62aff91cf6dcb9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Air trap</topic><topic>Computational fluid dynamics</topic><topic>Computer Simulation</topic><topic>Hemodialysis</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Microbubble</topic><topic>Microbubbles - adverse effects</topic><topic>Models, Chemical</topic><topic>Renal Dialysis - adverse effects</topic><topic>Renal Dialysis - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keshavarzi, Gholamreza</creatorcontrib><creatorcontrib>Barber, Tracie J.</creatorcontrib><creatorcontrib>Yeoh, Guan</creatorcontrib><creatorcontrib>Simmons, Anne</creatorcontrib><creatorcontrib>Reizes, John A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keshavarzi, Gholamreza</au><au>Barber, Tracie J.</au><au>Yeoh, Guan</au><au>Simmons, Anne</au><au>Reizes, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis</atitle><jtitle>Artificial organs</jtitle><addtitle>Artificial Organs</addtitle><date>2013-08</date><risdate>2013</risdate><volume>37</volume><issue>8</issue><spage>E139</spage><epage>E144</epage><pages>E139-E144</pages><issn>0160-564X</issn><eissn>1525-1594</eissn><abstract>On average, an end‐stage renal disease patient will undergo hemodialysis (HD) three or four times a week for 4–5 h per session. Any minor imperfection in the extracorporeal system may become significant in the treatment of these patients due to the cumulative exposure time. Recently, air traps (a safety feature of dialysis systems) have been reported to be inadequate in detecting microbubbles and may even create them. Microbubbles have been linked to lung injuries and damage to the brain in chronic HD patients; therefore the significance of microbubbles has been revisited. Bubbles may originate at the vascular access sites, sites of local turbulent blood flow, the air trap, or in the bloodlines after priming with saline prior to use. In this paper, computational fluid dynamics is used to model blood flow in the air trap to determine the likely mechanisms of microbubble dynamics. The results indicate that almost all bubbles with diameters less than 50 μm and most of the bubbles of 50–200 μm pass through the air trap. Consequently, the common air traps are not effective in removing bubbles less than 200 μm in diameter.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23826686</pmid><doi>10.1111/aor.12110</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0160-564X
ispartof Artificial organs, 2013-08, Vol.37 (8), p.E139-E144
issn 0160-564X
1525-1594
language eng
recordid cdi_proquest_miscellaneous_1434035810
source MEDLINE; Access via Wiley Online Library
subjects Air trap
Computational fluid dynamics
Computer Simulation
Hemodialysis
Humans
Hydrodynamics
Microbubble
Microbubbles - adverse effects
Models, Chemical
Renal Dialysis - adverse effects
Renal Dialysis - instrumentation
title Two-Dimensional Computational Analysis of Microbubbles in Hemodialysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Computational%20Analysis%20of%20Microbubbles%20in%20Hemodialysis&rft.jtitle=Artificial%20organs&rft.au=Keshavarzi,%20Gholamreza&rft.date=2013-08&rft.volume=37&rft.issue=8&rft.spage=E139&rft.epage=E144&rft.pages=E139-E144&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1111/aor.12110&rft_dat=%3Cproquest_cross%3E1426006894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1420402041&rft_id=info:pmid/23826686&rfr_iscdi=true