Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis
Abstract In this study the biomechanical characteristics of a realistic carotid artery [3] are studied numerically using different inlet velocity profiles. Several experimental data measured [32] at the common carotid artery are used as inlet boundary conditions. Computation domain is generated usin...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2013-07, Vol.43 (6), p.717-728 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 728 |
---|---|
container_issue | 6 |
container_start_page | 717 |
container_title | Computers in biology and medicine |
container_volume | 43 |
creator | Piskin, Senol Serdar Celebi, M |
description | Abstract In this study the biomechanical characteristics of a realistic carotid artery [3] are studied numerically using different inlet velocity profiles. Several experimental data measured [32] at the common carotid artery are used as inlet boundary conditions. Computation domain is generated using computed tomography (CT) data of a real patient. Three dimensional (3D) transient NS equations are solved, in this actual domain, using the proposed boundary conditions. Effects of different input conditions on the results of simulation are discussed. Main parameters such as velocity profiles, wall shear stress (WSS) and pressure distributions are investigated at the critical parts of the carotid artery such as bifurcation and sinusoidal enlargement regions. Results show that the input boundary conditions and slope/curvature discontinuities in the realistic geometry have strong relationship with the velocity, pressure and WSS distributions as expected. The most important conclusion obtained from our model is the existence of negative relation between velocity at several inner points of the internal carotid artery and velocity at the inlet of the common carotid artery. |
doi_str_mv | 10.1016/j.compbiomed.2013.02.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434035748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0010482513000656</els_id><sourcerecordid>2967277541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-19ff8b69bf7ef276b05232994d582c7e352f30baaaa1075a1edf99dcfa8e0e923</originalsourceid><addsrcrecordid>eNqNUk1vEzEQXSEQDYW_gCxx4ZIwtvfLF6RSUUCqxAE4W17vWHHwrhfbaZX_wo-tnbSq1Av4Yo_mvTfjeVNVhMKGAm0_7DbaT8tg_YTjhgHlG2AboPWzakX7Tqyh4fXzagVAYV33rDmrXsW4A4AaOLyszhhv257X3ar6ezErd4g2Em9I2iJBY1CnYzja_A44J7LsXVTJOiR2dpjj4E2OMmo-krY4-fEwq8lq5Up2wZAsHlUG5_1IjPO3mUyWLFMU44LaGquJVsEnOxIVEoYDubVpS2LC2eeeXlcvjHIR39zf59Wvq88_L7-ur79_-XZ5cb3WtYC0psKYfmjFYDo0rGsHaBhnQtRj0zPdIW-Y4TCofCh0jaI4GiFGbVSPgILx8-r9STd3_mePMcnJRo3OqRn9Pkpa8zy4pqv7f0N5Q1vouSjQd0-gO78PedwFVQvBBe9K7f6E0sHHGNDIJdhJhYOkIIvZcicfzZbFbAlMZrMz9e19gf1Qcg_EB3cz4NMJgHl4NxaDjDpPX-NoQzZZjt7-T5WPT0S0s3Mx-jceMD7-ScZMkD_K0pWdozzvW9u0_A7wB9gD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349939372</pqid></control><display><type>article</type><title>Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Piskin, Senol ; Serdar Celebi, M</creator><creatorcontrib>Piskin, Senol ; Serdar Celebi, M</creatorcontrib><description>Abstract In this study the biomechanical characteristics of a realistic carotid artery [3] are studied numerically using different inlet velocity profiles. Several experimental data measured [32] at the common carotid artery are used as inlet boundary conditions. Computation domain is generated using computed tomography (CT) data of a real patient. Three dimensional (3D) transient NS equations are solved, in this actual domain, using the proposed boundary conditions. Effects of different input conditions on the results of simulation are discussed. Main parameters such as velocity profiles, wall shear stress (WSS) and pressure distributions are investigated at the critical parts of the carotid artery such as bifurcation and sinusoidal enlargement regions. Results show that the input boundary conditions and slope/curvature discontinuities in the realistic geometry have strong relationship with the velocity, pressure and WSS distributions as expected. The most important conclusion obtained from our model is the existence of negative relation between velocity at several inner points of the internal carotid artery and velocity at the inlet of the common carotid artery.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2013.02.014</identifier><identifier>PMID: 23668347</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Atherosclerosis ; Biomechanics ; Blood ; Blood flow ; Blood Flow Velocity ; Blood vessels ; Boundaries ; Carotid artery bifurcation ; Carotid Artery, Common - pathology ; Carotid Artery, Common - physiology ; Carotid Stenosis - pathology ; Carotid Stenosis - physiopathology ; CFD ; Computational fluid dynamics ; Computed tomography ; Disease ; Female ; Geometry ; Humans ; Internal Medicine ; Male ; Mechanical properties ; Models, Cardiovascular ; Other ; Pulsatile Flow ; Real patient data ; Reynolds number ; Simulation ; Sinuses ; Studies ; Veins & arteries ; Wall shear stress ; Womersley velocity profile ; WSS</subject><ispartof>Computers in biology and medicine, 2013-07, Vol.43 (6), p.717-728</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-19ff8b69bf7ef276b05232994d582c7e352f30baaaa1075a1edf99dcfa8e0e923</citedby><cites>FETCH-LOGICAL-c490t-19ff8b69bf7ef276b05232994d582c7e352f30baaaa1075a1edf99dcfa8e0e923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482513000656$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23668347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piskin, Senol</creatorcontrib><creatorcontrib>Serdar Celebi, M</creatorcontrib><title>Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract In this study the biomechanical characteristics of a realistic carotid artery [3] are studied numerically using different inlet velocity profiles. Several experimental data measured [32] at the common carotid artery are used as inlet boundary conditions. Computation domain is generated using computed tomography (CT) data of a real patient. Three dimensional (3D) transient NS equations are solved, in this actual domain, using the proposed boundary conditions. Effects of different input conditions on the results of simulation are discussed. Main parameters such as velocity profiles, wall shear stress (WSS) and pressure distributions are investigated at the critical parts of the carotid artery such as bifurcation and sinusoidal enlargement regions. Results show that the input boundary conditions and slope/curvature discontinuities in the realistic geometry have strong relationship with the velocity, pressure and WSS distributions as expected. The most important conclusion obtained from our model is the existence of negative relation between velocity at several inner points of the internal carotid artery and velocity at the inlet of the common carotid artery.</description><subject>Atherosclerosis</subject><subject>Biomechanics</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Blood Flow Velocity</subject><subject>Blood vessels</subject><subject>Boundaries</subject><subject>Carotid artery bifurcation</subject><subject>Carotid Artery, Common - pathology</subject><subject>Carotid Artery, Common - physiology</subject><subject>Carotid Stenosis - pathology</subject><subject>Carotid Stenosis - physiopathology</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Disease</subject><subject>Female</subject><subject>Geometry</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Mechanical properties</subject><subject>Models, Cardiovascular</subject><subject>Other</subject><subject>Pulsatile Flow</subject><subject>Real patient data</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Sinuses</subject><subject>Studies</subject><subject>Veins & arteries</subject><subject>Wall shear stress</subject><subject>Womersley velocity profile</subject><subject>WSS</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNUk1vEzEQXSEQDYW_gCxx4ZIwtvfLF6RSUUCqxAE4W17vWHHwrhfbaZX_wo-tnbSq1Av4Yo_mvTfjeVNVhMKGAm0_7DbaT8tg_YTjhgHlG2AboPWzakX7Tqyh4fXzagVAYV33rDmrXsW4A4AaOLyszhhv257X3ar6ezErd4g2Em9I2iJBY1CnYzja_A44J7LsXVTJOiR2dpjj4E2OMmo-krY4-fEwq8lq5Up2wZAsHlUG5_1IjPO3mUyWLFMU44LaGquJVsEnOxIVEoYDubVpS2LC2eeeXlcvjHIR39zf59Wvq88_L7-ur79_-XZ5cb3WtYC0psKYfmjFYDo0rGsHaBhnQtRj0zPdIW-Y4TCofCh0jaI4GiFGbVSPgILx8-r9STd3_mePMcnJRo3OqRn9Pkpa8zy4pqv7f0N5Q1vouSjQd0-gO78PedwFVQvBBe9K7f6E0sHHGNDIJdhJhYOkIIvZcicfzZbFbAlMZrMz9e19gf1Qcg_EB3cz4NMJgHl4NxaDjDpPX-NoQzZZjt7-T5WPT0S0s3Mx-jceMD7-ScZMkD_K0pWdozzvW9u0_A7wB9gD</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Piskin, Senol</creator><creator>Serdar Celebi, M</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130701</creationdate><title>Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis</title><author>Piskin, Senol ; Serdar Celebi, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-19ff8b69bf7ef276b05232994d582c7e352f30baaaa1075a1edf99dcfa8e0e923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atherosclerosis</topic><topic>Biomechanics</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Blood Flow Velocity</topic><topic>Blood vessels</topic><topic>Boundaries</topic><topic>Carotid artery bifurcation</topic><topic>Carotid Artery, Common - pathology</topic><topic>Carotid Artery, Common - physiology</topic><topic>Carotid Stenosis - pathology</topic><topic>Carotid Stenosis - physiopathology</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Disease</topic><topic>Female</topic><topic>Geometry</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Mechanical properties</topic><topic>Models, Cardiovascular</topic><topic>Other</topic><topic>Pulsatile Flow</topic><topic>Real patient data</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Sinuses</topic><topic>Studies</topic><topic>Veins & arteries</topic><topic>Wall shear stress</topic><topic>Womersley velocity profile</topic><topic>WSS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piskin, Senol</creatorcontrib><creatorcontrib>Serdar Celebi, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piskin, Senol</au><au>Serdar Celebi, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>43</volume><issue>6</issue><spage>717</spage><epage>728</epage><pages>717-728</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract In this study the biomechanical characteristics of a realistic carotid artery [3] are studied numerically using different inlet velocity profiles. Several experimental data measured [32] at the common carotid artery are used as inlet boundary conditions. Computation domain is generated using computed tomography (CT) data of a real patient. Three dimensional (3D) transient NS equations are solved, in this actual domain, using the proposed boundary conditions. Effects of different input conditions on the results of simulation are discussed. Main parameters such as velocity profiles, wall shear stress (WSS) and pressure distributions are investigated at the critical parts of the carotid artery such as bifurcation and sinusoidal enlargement regions. Results show that the input boundary conditions and slope/curvature discontinuities in the realistic geometry have strong relationship with the velocity, pressure and WSS distributions as expected. The most important conclusion obtained from our model is the existence of negative relation between velocity at several inner points of the internal carotid artery and velocity at the inlet of the common carotid artery.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>23668347</pmid><doi>10.1016/j.compbiomed.2013.02.014</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2013-07, Vol.43 (6), p.717-728 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_1434035748 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Atherosclerosis Biomechanics Blood Blood flow Blood Flow Velocity Blood vessels Boundaries Carotid artery bifurcation Carotid Artery, Common - pathology Carotid Artery, Common - physiology Carotid Stenosis - pathology Carotid Stenosis - physiopathology CFD Computational fluid dynamics Computed tomography Disease Female Geometry Humans Internal Medicine Male Mechanical properties Models, Cardiovascular Other Pulsatile Flow Real patient data Reynolds number Simulation Sinuses Studies Veins & arteries Wall shear stress Womersley velocity profile WSS |
title | Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20effects%20of%20different%20pulsatile%20inlet%20profiles%20on%20the%20hemodynamical%20properties%20of%20blood%20flow%20in%20patient%20specific%20carotid%20artery%20with%20stenosis&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Piskin,%20Senol&rft.date=2013-07-01&rft.volume=43&rft.issue=6&rft.spage=717&rft.epage=728&rft.pages=717-728&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2013.02.014&rft_dat=%3Cproquest_cross%3E2967277541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349939372&rft_id=info:pmid/23668347&rft_els_id=1_s2_0_S0010482513000656&rfr_iscdi=true |