Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis

Abstract In this study the biomechanical characteristics of a realistic carotid artery [3] are studied numerically using different inlet velocity profiles. Several experimental data measured [32] at the common carotid artery are used as inlet boundary conditions. Computation domain is generated usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2013-07, Vol.43 (6), p.717-728
Hauptverfasser: Piskin, Senol, Serdar Celebi, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 728
container_issue 6
container_start_page 717
container_title Computers in biology and medicine
container_volume 43
creator Piskin, Senol
Serdar Celebi, M
description Abstract In this study the biomechanical characteristics of a realistic carotid artery [3] are studied numerically using different inlet velocity profiles. Several experimental data measured [32] at the common carotid artery are used as inlet boundary conditions. Computation domain is generated using computed tomography (CT) data of a real patient. Three dimensional (3D) transient NS equations are solved, in this actual domain, using the proposed boundary conditions. Effects of different input conditions on the results of simulation are discussed. Main parameters such as velocity profiles, wall shear stress (WSS) and pressure distributions are investigated at the critical parts of the carotid artery such as bifurcation and sinusoidal enlargement regions. Results show that the input boundary conditions and slope/curvature discontinuities in the realistic geometry have strong relationship with the velocity, pressure and WSS distributions as expected. The most important conclusion obtained from our model is the existence of negative relation between velocity at several inner points of the internal carotid artery and velocity at the inlet of the common carotid artery.
doi_str_mv 10.1016/j.compbiomed.2013.02.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434035748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0010482513000656</els_id><sourcerecordid>2967277541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-19ff8b69bf7ef276b05232994d582c7e352f30baaaa1075a1edf99dcfa8e0e923</originalsourceid><addsrcrecordid>eNqNUk1vEzEQXSEQDYW_gCxx4ZIwtvfLF6RSUUCqxAE4W17vWHHwrhfbaZX_wo-tnbSq1Av4Yo_mvTfjeVNVhMKGAm0_7DbaT8tg_YTjhgHlG2AboPWzakX7Tqyh4fXzagVAYV33rDmrXsW4A4AaOLyszhhv257X3ar6ezErd4g2Em9I2iJBY1CnYzja_A44J7LsXVTJOiR2dpjj4E2OMmo-krY4-fEwq8lq5Up2wZAsHlUG5_1IjPO3mUyWLFMU44LaGquJVsEnOxIVEoYDubVpS2LC2eeeXlcvjHIR39zf59Wvq88_L7-ur79_-XZ5cb3WtYC0psKYfmjFYDo0rGsHaBhnQtRj0zPdIW-Y4TCofCh0jaI4GiFGbVSPgILx8-r9STd3_mePMcnJRo3OqRn9Pkpa8zy4pqv7f0N5Q1vouSjQd0-gO78PedwFVQvBBe9K7f6E0sHHGNDIJdhJhYOkIIvZcicfzZbFbAlMZrMz9e19gf1Qcg_EB3cz4NMJgHl4NxaDjDpPX-NoQzZZjt7-T5WPT0S0s3Mx-jceMD7-ScZMkD_K0pWdozzvW9u0_A7wB9gD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349939372</pqid></control><display><type>article</type><title>Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Piskin, Senol ; Serdar Celebi, M</creator><creatorcontrib>Piskin, Senol ; Serdar Celebi, M</creatorcontrib><description>Abstract In this study the biomechanical characteristics of a realistic carotid artery [3] are studied numerically using different inlet velocity profiles. Several experimental data measured [32] at the common carotid artery are used as inlet boundary conditions. Computation domain is generated using computed tomography (CT) data of a real patient. Three dimensional (3D) transient NS equations are solved, in this actual domain, using the proposed boundary conditions. Effects of different input conditions on the results of simulation are discussed. Main parameters such as velocity profiles, wall shear stress (WSS) and pressure distributions are investigated at the critical parts of the carotid artery such as bifurcation and sinusoidal enlargement regions. Results show that the input boundary conditions and slope/curvature discontinuities in the realistic geometry have strong relationship with the velocity, pressure and WSS distributions as expected. The most important conclusion obtained from our model is the existence of negative relation between velocity at several inner points of the internal carotid artery and velocity at the inlet of the common carotid artery.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2013.02.014</identifier><identifier>PMID: 23668347</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Atherosclerosis ; Biomechanics ; Blood ; Blood flow ; Blood Flow Velocity ; Blood vessels ; Boundaries ; Carotid artery bifurcation ; Carotid Artery, Common - pathology ; Carotid Artery, Common - physiology ; Carotid Stenosis - pathology ; Carotid Stenosis - physiopathology ; CFD ; Computational fluid dynamics ; Computed tomography ; Disease ; Female ; Geometry ; Humans ; Internal Medicine ; Male ; Mechanical properties ; Models, Cardiovascular ; Other ; Pulsatile Flow ; Real patient data ; Reynolds number ; Simulation ; Sinuses ; Studies ; Veins &amp; arteries ; Wall shear stress ; Womersley velocity profile ; WSS</subject><ispartof>Computers in biology and medicine, 2013-07, Vol.43 (6), p.717-728</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-19ff8b69bf7ef276b05232994d582c7e352f30baaaa1075a1edf99dcfa8e0e923</citedby><cites>FETCH-LOGICAL-c490t-19ff8b69bf7ef276b05232994d582c7e352f30baaaa1075a1edf99dcfa8e0e923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482513000656$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23668347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piskin, Senol</creatorcontrib><creatorcontrib>Serdar Celebi, M</creatorcontrib><title>Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract In this study the biomechanical characteristics of a realistic carotid artery [3] are studied numerically using different inlet velocity profiles. Several experimental data measured [32] at the common carotid artery are used as inlet boundary conditions. Computation domain is generated using computed tomography (CT) data of a real patient. Three dimensional (3D) transient NS equations are solved, in this actual domain, using the proposed boundary conditions. Effects of different input conditions on the results of simulation are discussed. Main parameters such as velocity profiles, wall shear stress (WSS) and pressure distributions are investigated at the critical parts of the carotid artery such as bifurcation and sinusoidal enlargement regions. Results show that the input boundary conditions and slope/curvature discontinuities in the realistic geometry have strong relationship with the velocity, pressure and WSS distributions as expected. The most important conclusion obtained from our model is the existence of negative relation between velocity at several inner points of the internal carotid artery and velocity at the inlet of the common carotid artery.</description><subject>Atherosclerosis</subject><subject>Biomechanics</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Blood Flow Velocity</subject><subject>Blood vessels</subject><subject>Boundaries</subject><subject>Carotid artery bifurcation</subject><subject>Carotid Artery, Common - pathology</subject><subject>Carotid Artery, Common - physiology</subject><subject>Carotid Stenosis - pathology</subject><subject>Carotid Stenosis - physiopathology</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Disease</subject><subject>Female</subject><subject>Geometry</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Mechanical properties</subject><subject>Models, Cardiovascular</subject><subject>Other</subject><subject>Pulsatile Flow</subject><subject>Real patient data</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Sinuses</subject><subject>Studies</subject><subject>Veins &amp; arteries</subject><subject>Wall shear stress</subject><subject>Womersley velocity profile</subject><subject>WSS</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNUk1vEzEQXSEQDYW_gCxx4ZIwtvfLF6RSUUCqxAE4W17vWHHwrhfbaZX_wo-tnbSq1Av4Yo_mvTfjeVNVhMKGAm0_7DbaT8tg_YTjhgHlG2AboPWzakX7Tqyh4fXzagVAYV33rDmrXsW4A4AaOLyszhhv257X3ar6ezErd4g2Em9I2iJBY1CnYzja_A44J7LsXVTJOiR2dpjj4E2OMmo-krY4-fEwq8lq5Up2wZAsHlUG5_1IjPO3mUyWLFMU44LaGquJVsEnOxIVEoYDubVpS2LC2eeeXlcvjHIR39zf59Wvq88_L7-ur79_-XZ5cb3WtYC0psKYfmjFYDo0rGsHaBhnQtRj0zPdIW-Y4TCofCh0jaI4GiFGbVSPgILx8-r9STd3_mePMcnJRo3OqRn9Pkpa8zy4pqv7f0N5Q1vouSjQd0-gO78PedwFVQvBBe9K7f6E0sHHGNDIJdhJhYOkIIvZcicfzZbFbAlMZrMz9e19gf1Qcg_EB3cz4NMJgHl4NxaDjDpPX-NoQzZZjt7-T5WPT0S0s3Mx-jceMD7-ScZMkD_K0pWdozzvW9u0_A7wB9gD</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Piskin, Senol</creator><creator>Serdar Celebi, M</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130701</creationdate><title>Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis</title><author>Piskin, Senol ; Serdar Celebi, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-19ff8b69bf7ef276b05232994d582c7e352f30baaaa1075a1edf99dcfa8e0e923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atherosclerosis</topic><topic>Biomechanics</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Blood Flow Velocity</topic><topic>Blood vessels</topic><topic>Boundaries</topic><topic>Carotid artery bifurcation</topic><topic>Carotid Artery, Common - pathology</topic><topic>Carotid Artery, Common - physiology</topic><topic>Carotid Stenosis - pathology</topic><topic>Carotid Stenosis - physiopathology</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Disease</topic><topic>Female</topic><topic>Geometry</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Mechanical properties</topic><topic>Models, Cardiovascular</topic><topic>Other</topic><topic>Pulsatile Flow</topic><topic>Real patient data</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Sinuses</topic><topic>Studies</topic><topic>Veins &amp; arteries</topic><topic>Wall shear stress</topic><topic>Womersley velocity profile</topic><topic>WSS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piskin, Senol</creatorcontrib><creatorcontrib>Serdar Celebi, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piskin, Senol</au><au>Serdar Celebi, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>43</volume><issue>6</issue><spage>717</spage><epage>728</epage><pages>717-728</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract In this study the biomechanical characteristics of a realistic carotid artery [3] are studied numerically using different inlet velocity profiles. Several experimental data measured [32] at the common carotid artery are used as inlet boundary conditions. Computation domain is generated using computed tomography (CT) data of a real patient. Three dimensional (3D) transient NS equations are solved, in this actual domain, using the proposed boundary conditions. Effects of different input conditions on the results of simulation are discussed. Main parameters such as velocity profiles, wall shear stress (WSS) and pressure distributions are investigated at the critical parts of the carotid artery such as bifurcation and sinusoidal enlargement regions. Results show that the input boundary conditions and slope/curvature discontinuities in the realistic geometry have strong relationship with the velocity, pressure and WSS distributions as expected. The most important conclusion obtained from our model is the existence of negative relation between velocity at several inner points of the internal carotid artery and velocity at the inlet of the common carotid artery.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>23668347</pmid><doi>10.1016/j.compbiomed.2013.02.014</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2013-07, Vol.43 (6), p.717-728
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_1434035748
source MEDLINE; Elsevier ScienceDirect Journals
subjects Atherosclerosis
Biomechanics
Blood
Blood flow
Blood Flow Velocity
Blood vessels
Boundaries
Carotid artery bifurcation
Carotid Artery, Common - pathology
Carotid Artery, Common - physiology
Carotid Stenosis - pathology
Carotid Stenosis - physiopathology
CFD
Computational fluid dynamics
Computed tomography
Disease
Female
Geometry
Humans
Internal Medicine
Male
Mechanical properties
Models, Cardiovascular
Other
Pulsatile Flow
Real patient data
Reynolds number
Simulation
Sinuses
Studies
Veins & arteries
Wall shear stress
Womersley velocity profile
WSS
title Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20effects%20of%20different%20pulsatile%20inlet%20profiles%20on%20the%20hemodynamical%20properties%20of%20blood%20flow%20in%20patient%20specific%20carotid%20artery%20with%20stenosis&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Piskin,%20Senol&rft.date=2013-07-01&rft.volume=43&rft.issue=6&rft.spage=717&rft.epage=728&rft.pages=717-728&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2013.02.014&rft_dat=%3Cproquest_cross%3E2967277541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349939372&rft_id=info:pmid/23668347&rft_els_id=1_s2_0_S0010482513000656&rfr_iscdi=true