Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore
Rising levels of CO 2 in the atmosphere have led to increased CO 2 concentrations in the oceans. This enhanced carbon availability to the marine primary producers has the potential to change their nutrient stoichiometry, and higher carbon-to-nutrient ratios are expected. As a result, the quality of...
Gespeichert in:
Veröffentlicht in: | Marine biology 2013-08, Vol.160 (8), p.2145-2155 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2155 |
---|---|
container_issue | 8 |
container_start_page | 2145 |
container_title | Marine biology |
container_volume | 160 |
creator | Schoo, Katherina L. Malzahn, Arne M. Krause, Evamaria Boersma, Maarten |
description | Rising levels of CO
2
in the atmosphere have led to increased CO
2
concentrations in the oceans. This enhanced carbon availability to the marine primary producers has the potential to change their nutrient stoichiometry, and higher carbon-to-nutrient ratios are expected. As a result, the quality of the primary producers as food for herbivores may change. Here, we present experimental work showing the effect of feeding
Rhodomonas salina
grown under different
p
CO
2
(200, 400 and 800 μatm) on the copepod
Acartia tonsa.
The rate of development of copepodites decreased with increasing CO
2
availability to the algae. The surplus carbon in the algae was excreted by the copepods, with younger stages (copepodites) excreting most of their surplus carbon through respiration and adult copepods excreting surplus carbon mostly as DOC. We consider the possible consequences of different excretory pathways for the ecosystem. A continued increase in the CO
2
availability for primary production, together with changes in the nutrient loading of coastal ecosystems, may cause changes in the trophic links between primary producers and herbivores. |
doi_str_mv | 10.1007/s00227-012-2121-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434035621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A341935373</galeid><sourcerecordid>A341935373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-4e06933e764d43457afeabab9515280b2c51f02e85bc7c79b43db8ea8fef67763</originalsourceid><addsrcrecordid>eNp1ks1uEzEUhUcIJELhAdhZYsNmWv-OZ5ZVxU-lSmxgbdme64mLYwfbKeQp-so4pJUKCvLC8r3fObq-Ol33luBzgrG8KBhTKntMaE8JJT1_1q0IZ7QncmLPu1Vri56Rgb7sXpVyi9tbUrbq7q-jzaALzMjqbFJEs0-__AxI32kftPHB1z3SoUIuaLve17QNOn6vjSw1ebv2aQM1NyTOSDsHtpZHK7u3wcflT2vJ6Wddo-SQRhudfQT0aOQtWkM2_i5leN29cDoUePNwn3XfPn74evW5v_ny6frq8qa3AyG154CHiTGQA58540JqB9poMwki6IgNtYI4TGEUxkorJ8PZbEbQowM3SDmws-790Xeb048dlKo2vlgIbSRIu6La7jhmYqCkoe_-QW_TLsc2XaPIyASR7Am16ADKR5dq1vZgqi4ZJxMTTLJG9SeoBSJkHVIE51v5L_78BN_ODBtvTwrIUWBzKiWDU9vs2773imB1SIo6JkW1pKhDUhRvGnrUlMbGBfKTD_5X9BtShsGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418351731</pqid></control><display><type>article</type><title>Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore</title><source>SpringerNature Journals</source><creator>Schoo, Katherina L. ; Malzahn, Arne M. ; Krause, Evamaria ; Boersma, Maarten</creator><creatorcontrib>Schoo, Katherina L. ; Malzahn, Arne M. ; Krause, Evamaria ; Boersma, Maarten</creatorcontrib><description>Rising levels of CO
2
in the atmosphere have led to increased CO
2
concentrations in the oceans. This enhanced carbon availability to the marine primary producers has the potential to change their nutrient stoichiometry, and higher carbon-to-nutrient ratios are expected. As a result, the quality of the primary producers as food for herbivores may change. Here, we present experimental work showing the effect of feeding
Rhodomonas salina
grown under different
p
CO
2
(200, 400 and 800 μatm) on the copepod
Acartia tonsa.
The rate of development of copepodites decreased with increasing CO
2
availability to the algae. The surplus carbon in the algae was excreted by the copepods, with younger stages (copepodites) excreting most of their surplus carbon through respiration and adult copepods excreting surplus carbon mostly as DOC. We consider the possible consequences of different excretory pathways for the ecosystem. A continued increase in the CO
2
availability for primary production, together with changes in the nutrient loading of coastal ecosystems, may cause changes in the trophic links between primary producers and herbivores.</description><identifier>ISSN: 0025-3162</identifier><identifier>EISSN: 1432-1793</identifier><identifier>DOI: 10.1007/s00227-012-2121-4</identifier><identifier>CODEN: MBIOAJ</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acartia tonsa ; Acidification ; Algae ; Aquatic microbiology ; Bioavailability ; Biomedical and Life Sciences ; Carbon cycle ; Carbon dioxide ; Coastal ecosystems ; Environmental aspects ; Freshwater & Marine Ecology ; Herbivores ; Life Sciences ; Marine ; Marine & Freshwater Sciences ; Marine biology ; Microbiology ; Nutrient loading ; Oceanography ; Oceans ; Original Paper ; Phytochemicals ; Phytoplankton ; Plankton ; Primary production ; Rhodomonas salina ; Stoichiometry ; Water ; Zoology</subject><ispartof>Marine biology, 2013-08, Vol.160 (8), p.2145-2155</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c611t-4e06933e764d43457afeabab9515280b2c51f02e85bc7c79b43db8ea8fef67763</citedby><cites>FETCH-LOGICAL-c611t-4e06933e764d43457afeabab9515280b2c51f02e85bc7c79b43db8ea8fef67763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00227-012-2121-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00227-012-2121-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Schoo, Katherina L.</creatorcontrib><creatorcontrib>Malzahn, Arne M.</creatorcontrib><creatorcontrib>Krause, Evamaria</creatorcontrib><creatorcontrib>Boersma, Maarten</creatorcontrib><title>Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore</title><title>Marine biology</title><addtitle>Mar Biol</addtitle><description>Rising levels of CO
2
in the atmosphere have led to increased CO
2
concentrations in the oceans. This enhanced carbon availability to the marine primary producers has the potential to change their nutrient stoichiometry, and higher carbon-to-nutrient ratios are expected. As a result, the quality of the primary producers as food for herbivores may change. Here, we present experimental work showing the effect of feeding
Rhodomonas salina
grown under different
p
CO
2
(200, 400 and 800 μatm) on the copepod
Acartia tonsa.
The rate of development of copepodites decreased with increasing CO
2
availability to the algae. The surplus carbon in the algae was excreted by the copepods, with younger stages (copepodites) excreting most of their surplus carbon through respiration and adult copepods excreting surplus carbon mostly as DOC. We consider the possible consequences of different excretory pathways for the ecosystem. A continued increase in the CO
2
availability for primary production, together with changes in the nutrient loading of coastal ecosystems, may cause changes in the trophic links between primary producers and herbivores.</description><subject>Acartia tonsa</subject><subject>Acidification</subject><subject>Algae</subject><subject>Aquatic microbiology</subject><subject>Bioavailability</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Coastal ecosystems</subject><subject>Environmental aspects</subject><subject>Freshwater & Marine Ecology</subject><subject>Herbivores</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Marine & Freshwater Sciences</subject><subject>Marine biology</subject><subject>Microbiology</subject><subject>Nutrient loading</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Original Paper</subject><subject>Phytochemicals</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Primary production</subject><subject>Rhodomonas salina</subject><subject>Stoichiometry</subject><subject>Water</subject><subject>Zoology</subject><issn>0025-3162</issn><issn>1432-1793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ks1uEzEUhUcIJELhAdhZYsNmWv-OZ5ZVxU-lSmxgbdme64mLYwfbKeQp-so4pJUKCvLC8r3fObq-Ol33luBzgrG8KBhTKntMaE8JJT1_1q0IZ7QncmLPu1Vri56Rgb7sXpVyi9tbUrbq7q-jzaALzMjqbFJEs0-__AxI32kftPHB1z3SoUIuaLve17QNOn6vjSw1ebv2aQM1NyTOSDsHtpZHK7u3wcflT2vJ6Wddo-SQRhudfQT0aOQtWkM2_i5leN29cDoUePNwn3XfPn74evW5v_ny6frq8qa3AyG154CHiTGQA58540JqB9poMwki6IgNtYI4TGEUxkorJ8PZbEbQowM3SDmws-790Xeb048dlKo2vlgIbSRIu6La7jhmYqCkoe_-QW_TLsc2XaPIyASR7Am16ADKR5dq1vZgqi4ZJxMTTLJG9SeoBSJkHVIE51v5L_78BN_ODBtvTwrIUWBzKiWDU9vs2773imB1SIo6JkW1pKhDUhRvGnrUlMbGBfKTD_5X9BtShsGM</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Schoo, Katherina L.</creator><creator>Malzahn, Arne M.</creator><creator>Krause, Evamaria</creator><creator>Boersma, Maarten</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>SOI</scope><scope>H99</scope><scope>L.F</scope></search><sort><creationdate>20130801</creationdate><title>Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore</title><author>Schoo, Katherina L. ; Malzahn, Arne M. ; Krause, Evamaria ; Boersma, Maarten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-4e06933e764d43457afeabab9515280b2c51f02e85bc7c79b43db8ea8fef67763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acartia tonsa</topic><topic>Acidification</topic><topic>Algae</topic><topic>Aquatic microbiology</topic><topic>Bioavailability</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Coastal ecosystems</topic><topic>Environmental aspects</topic><topic>Freshwater & Marine Ecology</topic><topic>Herbivores</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Marine & Freshwater Sciences</topic><topic>Marine biology</topic><topic>Microbiology</topic><topic>Nutrient loading</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Original Paper</topic><topic>Phytochemicals</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Primary production</topic><topic>Rhodomonas salina</topic><topic>Stoichiometry</topic><topic>Water</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schoo, Katherina L.</creatorcontrib><creatorcontrib>Malzahn, Arne M.</creatorcontrib><creatorcontrib>Krause, Evamaria</creatorcontrib><creatorcontrib>Boersma, Maarten</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><jtitle>Marine biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schoo, Katherina L.</au><au>Malzahn, Arne M.</au><au>Krause, Evamaria</au><au>Boersma, Maarten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore</atitle><jtitle>Marine biology</jtitle><stitle>Mar Biol</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>160</volume><issue>8</issue><spage>2145</spage><epage>2155</epage><pages>2145-2155</pages><issn>0025-3162</issn><eissn>1432-1793</eissn><coden>MBIOAJ</coden><abstract>Rising levels of CO
2
in the atmosphere have led to increased CO
2
concentrations in the oceans. This enhanced carbon availability to the marine primary producers has the potential to change their nutrient stoichiometry, and higher carbon-to-nutrient ratios are expected. As a result, the quality of the primary producers as food for herbivores may change. Here, we present experimental work showing the effect of feeding
Rhodomonas salina
grown under different
p
CO
2
(200, 400 and 800 μatm) on the copepod
Acartia tonsa.
The rate of development of copepodites decreased with increasing CO
2
availability to the algae. The surplus carbon in the algae was excreted by the copepods, with younger stages (copepodites) excreting most of their surplus carbon through respiration and adult copepods excreting surplus carbon mostly as DOC. We consider the possible consequences of different excretory pathways for the ecosystem. A continued increase in the CO
2
availability for primary production, together with changes in the nutrient loading of coastal ecosystems, may cause changes in the trophic links between primary producers and herbivores.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00227-012-2121-4</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-3162 |
ispartof | Marine biology, 2013-08, Vol.160 (8), p.2145-2155 |
issn | 0025-3162 1432-1793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1434035621 |
source | SpringerNature Journals |
subjects | Acartia tonsa Acidification Algae Aquatic microbiology Bioavailability Biomedical and Life Sciences Carbon cycle Carbon dioxide Coastal ecosystems Environmental aspects Freshwater & Marine Ecology Herbivores Life Sciences Marine Marine & Freshwater Sciences Marine biology Microbiology Nutrient loading Oceanography Oceans Original Paper Phytochemicals Phytoplankton Plankton Primary production Rhodomonas salina Stoichiometry Water Zoology |
title | Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20carbon%20dioxide%20availability%20alters%20phytoplankton%20stoichiometry%20and%20affects%20carbon%20cycling%20and%20growth%20of%20a%20marine%20planktonic%20herbivore&rft.jtitle=Marine%20biology&rft.au=Schoo,%20Katherina%20L.&rft.date=2013-08-01&rft.volume=160&rft.issue=8&rft.spage=2145&rft.epage=2155&rft.pages=2145-2155&rft.issn=0025-3162&rft.eissn=1432-1793&rft.coden=MBIOAJ&rft_id=info:doi/10.1007/s00227-012-2121-4&rft_dat=%3Cgale_proqu%3EA341935373%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418351731&rft_id=info:pmid/&rft_galeid=A341935373&rfr_iscdi=true |