Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction

Contrast‐enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo‐random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2013-02, Vol.69 (2), p.346-359
Hauptverfasser: Lee, Gregory R., Seiberlich, Nicole, Sunshine, Jeffrey L., Carroll, Timothy J., Griswold, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 2
container_start_page 346
container_title Magnetic resonance in medicine
container_volume 69
creator Lee, Gregory R.
Seiberlich, Nicole
Sunshine, Jeffrey L.
Carroll, Timothy J.
Griswold, Mark A.
description Contrast‐enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo‐random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was used. Whole brain angiograms were reconstructed at 1‐mm isotropic resolution and a 1.1‐s frame rate (corresponding to an acceleration factor > 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal‐to‐noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.
doi_str_mv 10.1002/mrm.24256
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434033364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873579961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4596-faf9df5ed5a2b047fcad2279d3c1c1cbfb435f6e2c0927ad0f69e93eeff73fac3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_BBFLutHvwHJOBFD9Nm8mPSHGW1q9BVrIrH8DZ52WadmWyTmdb9703dtgdBJIcH4fO-8PhW1YuGHjeUspM-9cdMMNk-qmaNZKxmUovH1YwqQWveaHFQHea8oZRqrcTT6oAxobgSbFYNF7ANjoyhxzphjt01OtLDesAxWHL7M8BgkcCwDnGdYHu5I9cBCJB-6saA9jKSBC5AR8YEG7RjTLuiHVkkeIdfS4SNQx7TZMcQh2fVEw9dxud386j6fvb-2_xDff558XH-9ry2Quq29uC18xKdBLaiQnkLjjGlHbdNeSu_Elz6Fpmlmilw1LcaNUf0XnEPlh9Vr_e52xSvJsyj6UO22HUwYJyyaQQXlHPeiv9TdsqoaBouC331F93EKQ3lkKIU40xLflrUm72yKeac0JttCj2knWmoue3LlL7Mn76KfXmXOK16dA_yvqACTvbgJnS4-3eSWV4s7yPr_UbII_562ID007QlU5ofnxbmi5DL-ZmiRvHftyav_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272329538</pqid></control><display><type>article</type><title>Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Lee, Gregory R. ; Seiberlich, Nicole ; Sunshine, Jeffrey L. ; Carroll, Timothy J. ; Griswold, Mark A.</creator><creatorcontrib>Lee, Gregory R. ; Seiberlich, Nicole ; Sunshine, Jeffrey L. ; Carroll, Timothy J. ; Griswold, Mark A.</creatorcontrib><description>Contrast‐enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo‐random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was used. Whole brain angiograms were reconstructed at 1‐mm isotropic resolution and a 1.1‐s frame rate (corresponding to an acceleration factor &gt; 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal‐to‐noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.24256</identifier><identifier>PMID: 22473742</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>4D contrast enhanced angiography ; Algorithms ; Blood Flow Velocity ; Brain - pathology ; Brain - physiopathology ; Cerebrovascular Circulation ; Cerebrovascular Disorders - pathology ; Cerebrovascular Disorders - physiopathology ; compressed sensing ; Computer Systems ; Contrast Media ; Gadolinium ; GraDeS ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Angiography - methods ; Reproducibility of Results ; Sensitivity and Specificity ; time-resolved angiography</subject><ispartof>Magnetic resonance in medicine, 2013-02, Vol.69 (2), p.346-359</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4596-faf9df5ed5a2b047fcad2279d3c1c1cbfb435f6e2c0927ad0f69e93eeff73fac3</citedby><cites>FETCH-LOGICAL-c4596-faf9df5ed5a2b047fcad2279d3c1c1cbfb435f6e2c0927ad0f69e93eeff73fac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.24256$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.24256$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22473742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Gregory R.</creatorcontrib><creatorcontrib>Seiberlich, Nicole</creatorcontrib><creatorcontrib>Sunshine, Jeffrey L.</creatorcontrib><creatorcontrib>Carroll, Timothy J.</creatorcontrib><creatorcontrib>Griswold, Mark A.</creatorcontrib><title>Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Contrast‐enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo‐random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was used. Whole brain angiograms were reconstructed at 1‐mm isotropic resolution and a 1.1‐s frame rate (corresponding to an acceleration factor &gt; 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal‐to‐noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.</description><subject>4D contrast enhanced angiography</subject><subject>Algorithms</subject><subject>Blood Flow Velocity</subject><subject>Brain - pathology</subject><subject>Brain - physiopathology</subject><subject>Cerebrovascular Circulation</subject><subject>Cerebrovascular Disorders - pathology</subject><subject>Cerebrovascular Disorders - physiopathology</subject><subject>compressed sensing</subject><subject>Computer Systems</subject><subject>Contrast Media</subject><subject>Gadolinium</subject><subject>GraDeS</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>time-resolved angiography</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_BBFLutHvwHJOBFD9Nm8mPSHGW1q9BVrIrH8DZ52WadmWyTmdb9703dtgdBJIcH4fO-8PhW1YuGHjeUspM-9cdMMNk-qmaNZKxmUovH1YwqQWveaHFQHea8oZRqrcTT6oAxobgSbFYNF7ANjoyhxzphjt01OtLDesAxWHL7M8BgkcCwDnGdYHu5I9cBCJB-6saA9jKSBC5AR8YEG7RjTLuiHVkkeIdfS4SNQx7TZMcQh2fVEw9dxud386j6fvb-2_xDff558XH-9ry2Quq29uC18xKdBLaiQnkLjjGlHbdNeSu_Elz6Fpmlmilw1LcaNUf0XnEPlh9Vr_e52xSvJsyj6UO22HUwYJyyaQQXlHPeiv9TdsqoaBouC331F93EKQ3lkKIU40xLflrUm72yKeac0JttCj2knWmoue3LlL7Mn76KfXmXOK16dA_yvqACTvbgJnS4-3eSWV4s7yPr_UbII_562ID007QlU5ofnxbmi5DL-ZmiRvHftyav_A</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Lee, Gregory R.</creator><creator>Seiberlich, Nicole</creator><creator>Sunshine, Jeffrey L.</creator><creator>Carroll, Timothy J.</creator><creator>Griswold, Mark A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>201302</creationdate><title>Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction</title><author>Lee, Gregory R. ; Seiberlich, Nicole ; Sunshine, Jeffrey L. ; Carroll, Timothy J. ; Griswold, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4596-faf9df5ed5a2b047fcad2279d3c1c1cbfb435f6e2c0927ad0f69e93eeff73fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>4D contrast enhanced angiography</topic><topic>Algorithms</topic><topic>Blood Flow Velocity</topic><topic>Brain - pathology</topic><topic>Brain - physiopathology</topic><topic>Cerebrovascular Circulation</topic><topic>Cerebrovascular Disorders - pathology</topic><topic>Cerebrovascular Disorders - physiopathology</topic><topic>compressed sensing</topic><topic>Computer Systems</topic><topic>Contrast Media</topic><topic>Gadolinium</topic><topic>GraDeS</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>time-resolved angiography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Gregory R.</creatorcontrib><creatorcontrib>Seiberlich, Nicole</creatorcontrib><creatorcontrib>Sunshine, Jeffrey L.</creatorcontrib><creatorcontrib>Carroll, Timothy J.</creatorcontrib><creatorcontrib>Griswold, Mark A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Gregory R.</au><au>Seiberlich, Nicole</au><au>Sunshine, Jeffrey L.</au><au>Carroll, Timothy J.</au><au>Griswold, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2013-02</date><risdate>2013</risdate><volume>69</volume><issue>2</issue><spage>346</spage><epage>359</epage><pages>346-359</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Contrast‐enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo‐random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was used. Whole brain angiograms were reconstructed at 1‐mm isotropic resolution and a 1.1‐s frame rate (corresponding to an acceleration factor &gt; 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal‐to‐noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22473742</pmid><doi>10.1002/mrm.24256</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2013-02, Vol.69 (2), p.346-359
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_1434033364
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects 4D contrast enhanced angiography
Algorithms
Blood Flow Velocity
Brain - pathology
Brain - physiopathology
Cerebrovascular Circulation
Cerebrovascular Disorders - pathology
Cerebrovascular Disorders - physiopathology
compressed sensing
Computer Systems
Contrast Media
Gadolinium
GraDeS
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Angiography - methods
Reproducibility of Results
Sensitivity and Specificity
time-resolved angiography
title Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20time-resolved%20magnetic%20resonance%20angiography%20via%20a%20multiecho%20radial%20trajectory%20and%20GraDeS%20reconstruction&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Lee,%20Gregory%20R.&rft.date=2013-02&rft.volume=69&rft.issue=2&rft.spage=346&rft.epage=359&rft.pages=346-359&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.24256&rft_dat=%3Cproquest_cross%3E2873579961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272329538&rft_id=info:pmid/22473742&rfr_iscdi=true