Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction
Contrast‐enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo‐random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifac...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2013-02, Vol.69 (2), p.346-359 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | 2 |
container_start_page | 346 |
container_title | Magnetic resonance in medicine |
container_volume | 69 |
creator | Lee, Gregory R. Seiberlich, Nicole Sunshine, Jeffrey L. Carroll, Timothy J. Griswold, Mark A. |
description | Contrast‐enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo‐random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was used. Whole brain angiograms were reconstructed at 1‐mm isotropic resolution and a 1.1‐s frame rate (corresponding to an acceleration factor > 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal‐to‐noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/mrm.24256 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434033364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873579961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4596-faf9df5ed5a2b047fcad2279d3c1c1cbfb435f6e2c0927ad0f69e93eeff73fac3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_BBFLutHvwHJOBFD9Nm8mPSHGW1q9BVrIrH8DZ52WadmWyTmdb9703dtgdBJIcH4fO-8PhW1YuGHjeUspM-9cdMMNk-qmaNZKxmUovH1YwqQWveaHFQHea8oZRqrcTT6oAxobgSbFYNF7ANjoyhxzphjt01OtLDesAxWHL7M8BgkcCwDnGdYHu5I9cBCJB-6saA9jKSBC5AR8YEG7RjTLuiHVkkeIdfS4SNQx7TZMcQh2fVEw9dxud386j6fvb-2_xDff558XH-9ry2Quq29uC18xKdBLaiQnkLjjGlHbdNeSu_Elz6Fpmlmilw1LcaNUf0XnEPlh9Vr_e52xSvJsyj6UO22HUwYJyyaQQXlHPeiv9TdsqoaBouC331F93EKQ3lkKIU40xLflrUm72yKeac0JttCj2knWmoue3LlL7Mn76KfXmXOK16dA_yvqACTvbgJnS4-3eSWV4s7yPr_UbII_562ID007QlU5ofnxbmi5DL-ZmiRvHftyav_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272329538</pqid></control><display><type>article</type><title>Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Lee, Gregory R. ; Seiberlich, Nicole ; Sunshine, Jeffrey L. ; Carroll, Timothy J. ; Griswold, Mark A.</creator><creatorcontrib>Lee, Gregory R. ; Seiberlich, Nicole ; Sunshine, Jeffrey L. ; Carroll, Timothy J. ; Griswold, Mark A.</creatorcontrib><description>Contrast‐enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo‐random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was used. Whole brain angiograms were reconstructed at 1‐mm isotropic resolution and a 1.1‐s frame rate (corresponding to an acceleration factor > 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal‐to‐noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.24256</identifier><identifier>PMID: 22473742</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>4D contrast enhanced angiography ; Algorithms ; Blood Flow Velocity ; Brain - pathology ; Brain - physiopathology ; Cerebrovascular Circulation ; Cerebrovascular Disorders - pathology ; Cerebrovascular Disorders - physiopathology ; compressed sensing ; Computer Systems ; Contrast Media ; Gadolinium ; GraDeS ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Angiography - methods ; Reproducibility of Results ; Sensitivity and Specificity ; time-resolved angiography</subject><ispartof>Magnetic resonance in medicine, 2013-02, Vol.69 (2), p.346-359</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4596-faf9df5ed5a2b047fcad2279d3c1c1cbfb435f6e2c0927ad0f69e93eeff73fac3</citedby><cites>FETCH-LOGICAL-c4596-faf9df5ed5a2b047fcad2279d3c1c1cbfb435f6e2c0927ad0f69e93eeff73fac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.24256$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.24256$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22473742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Gregory R.</creatorcontrib><creatorcontrib>Seiberlich, Nicole</creatorcontrib><creatorcontrib>Sunshine, Jeffrey L.</creatorcontrib><creatorcontrib>Carroll, Timothy J.</creatorcontrib><creatorcontrib>Griswold, Mark A.</creatorcontrib><title>Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Contrast‐enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo‐random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was used. Whole brain angiograms were reconstructed at 1‐mm isotropic resolution and a 1.1‐s frame rate (corresponding to an acceleration factor > 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal‐to‐noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.</description><subject>4D contrast enhanced angiography</subject><subject>Algorithms</subject><subject>Blood Flow Velocity</subject><subject>Brain - pathology</subject><subject>Brain - physiopathology</subject><subject>Cerebrovascular Circulation</subject><subject>Cerebrovascular Disorders - pathology</subject><subject>Cerebrovascular Disorders - physiopathology</subject><subject>compressed sensing</subject><subject>Computer Systems</subject><subject>Contrast Media</subject><subject>Gadolinium</subject><subject>GraDeS</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>time-resolved angiography</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_BBFLutHvwHJOBFD9Nm8mPSHGW1q9BVrIrH8DZ52WadmWyTmdb9703dtgdBJIcH4fO-8PhW1YuGHjeUspM-9cdMMNk-qmaNZKxmUovH1YwqQWveaHFQHea8oZRqrcTT6oAxobgSbFYNF7ANjoyhxzphjt01OtLDesAxWHL7M8BgkcCwDnGdYHu5I9cBCJB-6saA9jKSBC5AR8YEG7RjTLuiHVkkeIdfS4SNQx7TZMcQh2fVEw9dxud386j6fvb-2_xDff558XH-9ry2Quq29uC18xKdBLaiQnkLjjGlHbdNeSu_Elz6Fpmlmilw1LcaNUf0XnEPlh9Vr_e52xSvJsyj6UO22HUwYJyyaQQXlHPeiv9TdsqoaBouC331F93EKQ3lkKIU40xLflrUm72yKeac0JttCj2knWmoue3LlL7Mn76KfXmXOK16dA_yvqACTvbgJnS4-3eSWV4s7yPr_UbII_562ID007QlU5ofnxbmi5DL-ZmiRvHftyav_A</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Lee, Gregory R.</creator><creator>Seiberlich, Nicole</creator><creator>Sunshine, Jeffrey L.</creator><creator>Carroll, Timothy J.</creator><creator>Griswold, Mark A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>201302</creationdate><title>Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction</title><author>Lee, Gregory R. ; Seiberlich, Nicole ; Sunshine, Jeffrey L. ; Carroll, Timothy J. ; Griswold, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4596-faf9df5ed5a2b047fcad2279d3c1c1cbfb435f6e2c0927ad0f69e93eeff73fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>4D contrast enhanced angiography</topic><topic>Algorithms</topic><topic>Blood Flow Velocity</topic><topic>Brain - pathology</topic><topic>Brain - physiopathology</topic><topic>Cerebrovascular Circulation</topic><topic>Cerebrovascular Disorders - pathology</topic><topic>Cerebrovascular Disorders - physiopathology</topic><topic>compressed sensing</topic><topic>Computer Systems</topic><topic>Contrast Media</topic><topic>Gadolinium</topic><topic>GraDeS</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>time-resolved angiography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Gregory R.</creatorcontrib><creatorcontrib>Seiberlich, Nicole</creatorcontrib><creatorcontrib>Sunshine, Jeffrey L.</creatorcontrib><creatorcontrib>Carroll, Timothy J.</creatorcontrib><creatorcontrib>Griswold, Mark A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Gregory R.</au><au>Seiberlich, Nicole</au><au>Sunshine, Jeffrey L.</au><au>Carroll, Timothy J.</au><au>Griswold, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2013-02</date><risdate>2013</risdate><volume>69</volume><issue>2</issue><spage>346</spage><epage>359</epage><pages>346-359</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Contrast‐enhanced magnetic resonance angiography is challenging due to the need for both high spatial and temporal resolution. A multishot trajectory composed of pseudo‐random rotations of a single multiecho radial readout was developed. The trajectory is designed to give incoherent aliasing artifacts and a relatively uniform distribution of projections over all time scales. A field map (computed from the same data set) is used to avoid signal dropout in regions of substantial field inhomogeneity. A compressed sensing reconstruction using the GraDeS algorithm was used. Whole brain angiograms were reconstructed at 1‐mm isotropic resolution and a 1.1‐s frame rate (corresponding to an acceleration factor > 100). The only parameter which must be chosen is the number of iterations of the GraDeS algorithm. A larger number of iterations improves the temporal behavior at cost of decreased image signal‐to‐noise ratio. The resulting images provide a good depiction of the cerebral vasculature and have excellent arterial/venous separation. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22473742</pmid><doi>10.1002/mrm.24256</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2013-02, Vol.69 (2), p.346-359 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1434033364 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content |
subjects | 4D contrast enhanced angiography Algorithms Blood Flow Velocity Brain - pathology Brain - physiopathology Cerebrovascular Circulation Cerebrovascular Disorders - pathology Cerebrovascular Disorders - physiopathology compressed sensing Computer Systems Contrast Media Gadolinium GraDeS Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Magnetic Resonance Angiography - methods Reproducibility of Results Sensitivity and Specificity time-resolved angiography |
title | Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20time-resolved%20magnetic%20resonance%20angiography%20via%20a%20multiecho%20radial%20trajectory%20and%20GraDeS%20reconstruction&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Lee,%20Gregory%20R.&rft.date=2013-02&rft.volume=69&rft.issue=2&rft.spage=346&rft.epage=359&rft.pages=346-359&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.24256&rft_dat=%3Cproquest_cross%3E2873579961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272329538&rft_id=info:pmid/22473742&rfr_iscdi=true |