Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice

Brain ageing leads to atrophy and degeneration of the cholinergic nervous system, resulting in profound neurobehavioral and cognitive dysfunction from decreased acetylcholine biosynthesis and reduced secretion of growth and neurotrophic factors. Human adipose tissue‐derived mesenchymal stem cells (A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2013-05, Vol.91 (5), p.660-670
Hauptverfasser: Park, Dongsun, Yang, Goeun, Bae, Dae Kwon, Lee, Sun Hee, Yang, Yun-Hui, Kyung, Jangbeen, Kim, Dajeong, Choi, Ehn-Kyoung, Choi, Kyung-Chul, Kim, Seung U., Kang, Sung Keun, Ra, Jeong Chan, Kim, Yun-Bae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 670
container_issue 5
container_start_page 660
container_title Journal of neuroscience research
container_volume 91
creator Park, Dongsun
Yang, Goeun
Bae, Dae Kwon
Lee, Sun Hee
Yang, Yun-Hui
Kyung, Jangbeen
Kim, Dajeong
Choi, Ehn-Kyoung
Choi, Kyung-Chul
Kim, Seung U.
Kang, Sung Keun
Ra, Jeong Chan
Kim, Yun-Bae
description Brain ageing leads to atrophy and degeneration of the cholinergic nervous system, resulting in profound neurobehavioral and cognitive dysfunction from decreased acetylcholine biosynthesis and reduced secretion of growth and neurotrophic factors. Human adipose tissue‐derived mesenchymal stem cells (ADMSCs) were intravenously (1 × 106 cells) or intracerebroventricularly (4 × 105 cells) transplanted into the brains of 18‐month‐old mice once or four times at 2‐week intervals. Transplantation of ADMSCs improved both locomotor activity and cognitive function in the aged animals, in parallel with recovery of acetylcholine levels in brain tissues. Transplanted cells differentiated into neurons and, in part, into astrocytes and produced choline acetyltransferase proteins. Transplantation of ADMSCs restored microtubule‐associated protein 2 in brain tissue and enhanced Trk B expression and the concentrations of brain‐derived neurotrophic factor and nerve growth factor. These results indicate that human ADMSCs differentiate into neural cells in the brain microenvironment and can restore physical and cognitive functions of aged mice not only by increasing acetylcholine synthesis but also by restoring neuronal integrity that may be mediated by growth/neurotrophic factors. © 2013 Wiley Periodicals, Inc.
doi_str_mv 10.1002/jnr.23182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434033112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920251081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4592-ecca2eeb3b7f3318e4fb37b646e5f3138eae8e655133cf4d54160fa7de8c8b463</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EokNhwQsgS2xgkda_sbNEFbQdjQqqQEhsLMe5mXqIk6mdDOTt8XTaLpAQK0v2uUf-7ofQa0pOKCHsdNPHE8apZk_QgpJKFUIK9RQtCC9JIQhlR-hFShtCSFVJ_hwdMS6IYCVZoHQxBdtj2_jtkACPPqUJigai30GDAyTo3c0cbIfTCAE76LqEfdjGYQfYDevej5nE7dS70Q9Z1Dd4ezMn7_KIzXc7P87Y54c1-H6Ng3fwEj1rbZfg1f15jL59-vj17KJYfT6_PPuwKpyQFSvAOcsAal6rlud0INqaq7oUJciWU67BgoZSSsq5a0UjBS1Ja1UD2ulalPwYvTt4829vJ0ijCT7tE9gehikZKvIaspmy_6M8uyXnmmb07V_oZphin4PsKSUqzWWVqfcHysUhpQit2UYfbJwNJWZfmsmlmbvSMvvm3jjVAZpH8qGlDJwegF--g_nfJrO8un5QFocJn2v7_Thh409TKq6k-X51bvTq-sdS6aX5wv8Ad6CxCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317498359</pqid></control><display><type>article</type><title>Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Park, Dongsun ; Yang, Goeun ; Bae, Dae Kwon ; Lee, Sun Hee ; Yang, Yun-Hui ; Kyung, Jangbeen ; Kim, Dajeong ; Choi, Ehn-Kyoung ; Choi, Kyung-Chul ; Kim, Seung U. ; Kang, Sung Keun ; Ra, Jeong Chan ; Kim, Yun-Bae</creator><creatorcontrib>Park, Dongsun ; Yang, Goeun ; Bae, Dae Kwon ; Lee, Sun Hee ; Yang, Yun-Hui ; Kyung, Jangbeen ; Kim, Dajeong ; Choi, Ehn-Kyoung ; Choi, Kyung-Chul ; Kim, Seung U. ; Kang, Sung Keun ; Ra, Jeong Chan ; Kim, Yun-Bae</creatorcontrib><description>Brain ageing leads to atrophy and degeneration of the cholinergic nervous system, resulting in profound neurobehavioral and cognitive dysfunction from decreased acetylcholine biosynthesis and reduced secretion of growth and neurotrophic factors. Human adipose tissue‐derived mesenchymal stem cells (ADMSCs) were intravenously (1 × 106 cells) or intracerebroventricularly (4 × 105 cells) transplanted into the brains of 18‐month‐old mice once or four times at 2‐week intervals. Transplantation of ADMSCs improved both locomotor activity and cognitive function in the aged animals, in parallel with recovery of acetylcholine levels in brain tissues. Transplanted cells differentiated into neurons and, in part, into astrocytes and produced choline acetyltransferase proteins. Transplantation of ADMSCs restored microtubule‐associated protein 2 in brain tissue and enhanced Trk B expression and the concentrations of brain‐derived neurotrophic factor and nerve growth factor. These results indicate that human ADMSCs differentiate into neural cells in the brain microenvironment and can restore physical and cognitive functions of aged mice not only by increasing acetylcholine synthesis but also by restoring neuronal integrity that may be mediated by growth/neurotrophic factors. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.23182</identifier><identifier>PMID: 23404260</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acetylcholine - metabolism ; Adipose Tissue - cytology ; ageing ; Aging - physiology ; Animals ; Avoidance Learning - physiology ; Brain - metabolism ; Brain - pathology ; brain-derived neurotrophic factor ; Cell Count ; Cell Differentiation - physiology ; Choline O-Acetyltransferase - metabolism ; Cognition Disorders - etiology ; Cognition Disorders - physiopathology ; Cognition Disorders - surgery ; cognitive function ; Disease Models, Animal ; Gene Expression Regulation - physiology ; human adipose-derived mesenchymal stem cell ; Humans ; Male ; Maze Learning - physiology ; Mesenchymal Stem Cell Transplantation - methods ; Mesenchymal Stromal Cells - physiology ; Mice ; Mice, Inbred ICR ; Motor Activity - physiology ; nerve growth factor ; Nerve Tissue Proteins - metabolism ; physical activity ; Time Factors</subject><ispartof>Journal of neuroscience research, 2013-05, Vol.91 (5), p.660-670</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4592-ecca2eeb3b7f3318e4fb37b646e5f3138eae8e655133cf4d54160fa7de8c8b463</citedby><cites>FETCH-LOGICAL-c4592-ecca2eeb3b7f3318e4fb37b646e5f3138eae8e655133cf4d54160fa7de8c8b463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnr.23182$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnr.23182$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23404260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Dongsun</creatorcontrib><creatorcontrib>Yang, Goeun</creatorcontrib><creatorcontrib>Bae, Dae Kwon</creatorcontrib><creatorcontrib>Lee, Sun Hee</creatorcontrib><creatorcontrib>Yang, Yun-Hui</creatorcontrib><creatorcontrib>Kyung, Jangbeen</creatorcontrib><creatorcontrib>Kim, Dajeong</creatorcontrib><creatorcontrib>Choi, Ehn-Kyoung</creatorcontrib><creatorcontrib>Choi, Kyung-Chul</creatorcontrib><creatorcontrib>Kim, Seung U.</creatorcontrib><creatorcontrib>Kang, Sung Keun</creatorcontrib><creatorcontrib>Ra, Jeong Chan</creatorcontrib><creatorcontrib>Kim, Yun-Bae</creatorcontrib><title>Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>Brain ageing leads to atrophy and degeneration of the cholinergic nervous system, resulting in profound neurobehavioral and cognitive dysfunction from decreased acetylcholine biosynthesis and reduced secretion of growth and neurotrophic factors. Human adipose tissue‐derived mesenchymal stem cells (ADMSCs) were intravenously (1 × 106 cells) or intracerebroventricularly (4 × 105 cells) transplanted into the brains of 18‐month‐old mice once or four times at 2‐week intervals. Transplantation of ADMSCs improved both locomotor activity and cognitive function in the aged animals, in parallel with recovery of acetylcholine levels in brain tissues. Transplanted cells differentiated into neurons and, in part, into astrocytes and produced choline acetyltransferase proteins. Transplantation of ADMSCs restored microtubule‐associated protein 2 in brain tissue and enhanced Trk B expression and the concentrations of brain‐derived neurotrophic factor and nerve growth factor. These results indicate that human ADMSCs differentiate into neural cells in the brain microenvironment and can restore physical and cognitive functions of aged mice not only by increasing acetylcholine synthesis but also by restoring neuronal integrity that may be mediated by growth/neurotrophic factors. © 2013 Wiley Periodicals, Inc.</description><subject>Acetylcholine - metabolism</subject><subject>Adipose Tissue - cytology</subject><subject>ageing</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Avoidance Learning - physiology</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>brain-derived neurotrophic factor</subject><subject>Cell Count</subject><subject>Cell Differentiation - physiology</subject><subject>Choline O-Acetyltransferase - metabolism</subject><subject>Cognition Disorders - etiology</subject><subject>Cognition Disorders - physiopathology</subject><subject>Cognition Disorders - surgery</subject><subject>cognitive function</subject><subject>Disease Models, Animal</subject><subject>Gene Expression Regulation - physiology</subject><subject>human adipose-derived mesenchymal stem cell</subject><subject>Humans</subject><subject>Male</subject><subject>Maze Learning - physiology</subject><subject>Mesenchymal Stem Cell Transplantation - methods</subject><subject>Mesenchymal Stromal Cells - physiology</subject><subject>Mice</subject><subject>Mice, Inbred ICR</subject><subject>Motor Activity - physiology</subject><subject>nerve growth factor</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>physical activity</subject><subject>Time Factors</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAURi0EokNhwQsgS2xgkda_sbNEFbQdjQqqQEhsLMe5mXqIk6mdDOTt8XTaLpAQK0v2uUf-7ofQa0pOKCHsdNPHE8apZk_QgpJKFUIK9RQtCC9JIQhlR-hFShtCSFVJ_hwdMS6IYCVZoHQxBdtj2_jtkACPPqUJigai30GDAyTo3c0cbIfTCAE76LqEfdjGYQfYDevej5nE7dS70Q9Z1Dd4ezMn7_KIzXc7P87Y54c1-H6Ng3fwEj1rbZfg1f15jL59-vj17KJYfT6_PPuwKpyQFSvAOcsAal6rlud0INqaq7oUJciWU67BgoZSSsq5a0UjBS1Ja1UD2ulalPwYvTt4829vJ0ijCT7tE9gehikZKvIaspmy_6M8uyXnmmb07V_oZphin4PsKSUqzWWVqfcHysUhpQit2UYfbJwNJWZfmsmlmbvSMvvm3jjVAZpH8qGlDJwegF--g_nfJrO8un5QFocJn2v7_Thh409TKq6k-X51bvTq-sdS6aX5wv8Ad6CxCQ</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Park, Dongsun</creator><creator>Yang, Goeun</creator><creator>Bae, Dae Kwon</creator><creator>Lee, Sun Hee</creator><creator>Yang, Yun-Hui</creator><creator>Kyung, Jangbeen</creator><creator>Kim, Dajeong</creator><creator>Choi, Ehn-Kyoung</creator><creator>Choi, Kyung-Chul</creator><creator>Kim, Seung U.</creator><creator>Kang, Sung Keun</creator><creator>Ra, Jeong Chan</creator><creator>Kim, Yun-Bae</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201305</creationdate><title>Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice</title><author>Park, Dongsun ; Yang, Goeun ; Bae, Dae Kwon ; Lee, Sun Hee ; Yang, Yun-Hui ; Kyung, Jangbeen ; Kim, Dajeong ; Choi, Ehn-Kyoung ; Choi, Kyung-Chul ; Kim, Seung U. ; Kang, Sung Keun ; Ra, Jeong Chan ; Kim, Yun-Bae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4592-ecca2eeb3b7f3318e4fb37b646e5f3138eae8e655133cf4d54160fa7de8c8b463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetylcholine - metabolism</topic><topic>Adipose Tissue - cytology</topic><topic>ageing</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Avoidance Learning - physiology</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>brain-derived neurotrophic factor</topic><topic>Cell Count</topic><topic>Cell Differentiation - physiology</topic><topic>Choline O-Acetyltransferase - metabolism</topic><topic>Cognition Disorders - etiology</topic><topic>Cognition Disorders - physiopathology</topic><topic>Cognition Disorders - surgery</topic><topic>cognitive function</topic><topic>Disease Models, Animal</topic><topic>Gene Expression Regulation - physiology</topic><topic>human adipose-derived mesenchymal stem cell</topic><topic>Humans</topic><topic>Male</topic><topic>Maze Learning - physiology</topic><topic>Mesenchymal Stem Cell Transplantation - methods</topic><topic>Mesenchymal Stromal Cells - physiology</topic><topic>Mice</topic><topic>Mice, Inbred ICR</topic><topic>Motor Activity - physiology</topic><topic>nerve growth factor</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>physical activity</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Dongsun</creatorcontrib><creatorcontrib>Yang, Goeun</creatorcontrib><creatorcontrib>Bae, Dae Kwon</creatorcontrib><creatorcontrib>Lee, Sun Hee</creatorcontrib><creatorcontrib>Yang, Yun-Hui</creatorcontrib><creatorcontrib>Kyung, Jangbeen</creatorcontrib><creatorcontrib>Kim, Dajeong</creatorcontrib><creatorcontrib>Choi, Ehn-Kyoung</creatorcontrib><creatorcontrib>Choi, Kyung-Chul</creatorcontrib><creatorcontrib>Kim, Seung U.</creatorcontrib><creatorcontrib>Kang, Sung Keun</creatorcontrib><creatorcontrib>Ra, Jeong Chan</creatorcontrib><creatorcontrib>Kim, Yun-Bae</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Dongsun</au><au>Yang, Goeun</au><au>Bae, Dae Kwon</au><au>Lee, Sun Hee</au><au>Yang, Yun-Hui</au><au>Kyung, Jangbeen</au><au>Kim, Dajeong</au><au>Choi, Ehn-Kyoung</au><au>Choi, Kyung-Chul</au><au>Kim, Seung U.</au><au>Kang, Sung Keun</au><au>Ra, Jeong Chan</au><au>Kim, Yun-Bae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>2013-05</date><risdate>2013</risdate><volume>91</volume><issue>5</issue><spage>660</spage><epage>670</epage><pages>660-670</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>Brain ageing leads to atrophy and degeneration of the cholinergic nervous system, resulting in profound neurobehavioral and cognitive dysfunction from decreased acetylcholine biosynthesis and reduced secretion of growth and neurotrophic factors. Human adipose tissue‐derived mesenchymal stem cells (ADMSCs) were intravenously (1 × 106 cells) or intracerebroventricularly (4 × 105 cells) transplanted into the brains of 18‐month‐old mice once or four times at 2‐week intervals. Transplantation of ADMSCs improved both locomotor activity and cognitive function in the aged animals, in parallel with recovery of acetylcholine levels in brain tissues. Transplanted cells differentiated into neurons and, in part, into astrocytes and produced choline acetyltransferase proteins. Transplantation of ADMSCs restored microtubule‐associated protein 2 in brain tissue and enhanced Trk B expression and the concentrations of brain‐derived neurotrophic factor and nerve growth factor. These results indicate that human ADMSCs differentiate into neural cells in the brain microenvironment and can restore physical and cognitive functions of aged mice not only by increasing acetylcholine synthesis but also by restoring neuronal integrity that may be mediated by growth/neurotrophic factors. © 2013 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23404260</pmid><doi>10.1002/jnr.23182</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 2013-05, Vol.91 (5), p.660-670
issn 0360-4012
1097-4547
language eng
recordid cdi_proquest_miscellaneous_1434033112
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acetylcholine - metabolism
Adipose Tissue - cytology
ageing
Aging - physiology
Animals
Avoidance Learning - physiology
Brain - metabolism
Brain - pathology
brain-derived neurotrophic factor
Cell Count
Cell Differentiation - physiology
Choline O-Acetyltransferase - metabolism
Cognition Disorders - etiology
Cognition Disorders - physiopathology
Cognition Disorders - surgery
cognitive function
Disease Models, Animal
Gene Expression Regulation - physiology
human adipose-derived mesenchymal stem cell
Humans
Male
Maze Learning - physiology
Mesenchymal Stem Cell Transplantation - methods
Mesenchymal Stromal Cells - physiology
Mice
Mice, Inbred ICR
Motor Activity - physiology
nerve growth factor
Nerve Tissue Proteins - metabolism
physical activity
Time Factors
title Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20adipose%20tissue-derived%20mesenchymal%20stem%20cells%20improve%20cognitive%20function%20and%20physical%20activity%20in%20ageing%20mice&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Park,%20Dongsun&rft.date=2013-05&rft.volume=91&rft.issue=5&rft.spage=660&rft.epage=670&rft.pages=660-670&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.23182&rft_dat=%3Cproquest_cross%3E2920251081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317498359&rft_id=info:pmid/23404260&rfr_iscdi=true