Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring
The development of a fiber Bragg grating (FBG) based distributed strain sensor system for real time structural health monitoring of a wind turbine rotor and its validation under a laboratory scale test setup is discussed in this paper. A 1 kW, 1.6 m diameter rotor, horizontal axis wind turbine with...
Gespeichert in:
Veröffentlicht in: | Smart materials and structures 2013-07, Vol.22 (7), p.75027-1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1-11 |
---|---|
container_issue | 7 |
container_start_page | 75027 |
container_title | Smart materials and structures |
container_volume | 22 |
creator | Arsenault, Tyler J Achuthan, Ajit Marzocca, Pier Grappasonni, Chiara Coppotelli, Giuliano |
description | The development of a fiber Bragg grating (FBG) based distributed strain sensor system for real time structural health monitoring of a wind turbine rotor and its validation under a laboratory scale test setup is discussed in this paper. A 1 kW, 1.6 m diameter rotor, horizontal axis wind turbine with three instrumented blades is used in this study. The sensor system consists of strain sensors, surface mounted at various locations on the blade. At first the sensors are calibrated under static loading conditions to validate the FBG mounting and the proposed data collection techniques. Then, the capability of the sensor system coupled with the operational modal analysis (OMA) methods to capture natural frequencies and corresponding mode shapes in terms of distributed strains are validated under various non-rotating dynamic loading conditions. Finally, the sensor system is tested under rotating conditions using the wind flow from an open-jet wind tunnel, for both a baseline wind turbine and a wind turbine with a structurally modified blade. The blade was modified by attaching a lumped mass at the blade tip simulating structural damage or ice accretion. The dynamic characteristics of the baseline (healthy) blade and modified (altered) blade are compared to validate the sensor system's ability for real time structural health monitoring of the rotor. |
doi_str_mv | 10.1088/0964-1726/22/7/075027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434029612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1434029612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-6e982bf93ee5bd643a3ce70d693e6487546dae821371ebfdf258aa148ac697d83</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BCEXwUvdJE2T9OjfVRC8KHgLaTvVLG2yJqnitzfLLnv1NG-G35thHkLnlFxRotSC1IIXVDKxYGwhF0RWhMkDNKOloIUQ1fshmu2ZY3QS44oQSlVJZ8jewTcMfj2CS9j32OCHmyVuTIQOdzamYJspZZ2VsQ5HcNEHHH9jghH3Wf5Y1-E0hcY62FBTmxsz4E8wQ_rEo3c2-WDdxyk66s0Q4WxX5-jt4f719rF4flk-3V4_Fy3nIhUCasWavi4BqqYTvDRlC5J0Ik8EV7LiojOgGC0lhabvelYpYyhXphW17FQ5R5fbvevgvyaISY82tjAMxoGfoqa85ITVgrKMVlu0DT7GAL1eBzua8Ksp0Zto9SY2vYlNM6al3kabfRe7Eya2ZuiDca2NezOTggha1ZmjW876tV75Kbj8-D-7_wA_8ol_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1434029612</pqid></control><display><type>article</type><title>Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Arsenault, Tyler J ; Achuthan, Ajit ; Marzocca, Pier ; Grappasonni, Chiara ; Coppotelli, Giuliano</creator><creatorcontrib>Arsenault, Tyler J ; Achuthan, Ajit ; Marzocca, Pier ; Grappasonni, Chiara ; Coppotelli, Giuliano</creatorcontrib><description>The development of a fiber Bragg grating (FBG) based distributed strain sensor system for real time structural health monitoring of a wind turbine rotor and its validation under a laboratory scale test setup is discussed in this paper. A 1 kW, 1.6 m diameter rotor, horizontal axis wind turbine with three instrumented blades is used in this study. The sensor system consists of strain sensors, surface mounted at various locations on the blade. At first the sensors are calibrated under static loading conditions to validate the FBG mounting and the proposed data collection techniques. Then, the capability of the sensor system coupled with the operational modal analysis (OMA) methods to capture natural frequencies and corresponding mode shapes in terms of distributed strains are validated under various non-rotating dynamic loading conditions. Finally, the sensor system is tested under rotating conditions using the wind flow from an open-jet wind tunnel, for both a baseline wind turbine and a wind turbine with a structurally modified blade. The blade was modified by attaching a lumped mass at the blade tip simulating structural damage or ice accretion. The dynamic characteristics of the baseline (healthy) blade and modified (altered) blade are compared to validate the sensor system's ability for real time structural health monitoring of the rotor.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/0964-1726/22/7/075027</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Measurement and testing methods ; Physics ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Smart materials and structures, 2013-07, Vol.22 (7), p.75027-1-11</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-6e982bf93ee5bd643a3ce70d693e6487546dae821371ebfdf258aa148ac697d83</citedby><cites>FETCH-LOGICAL-c446t-6e982bf93ee5bd643a3ce70d693e6487546dae821371ebfdf258aa148ac697d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0964-1726/22/7/075027/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53829,53876</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27606159$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Arsenault, Tyler J</creatorcontrib><creatorcontrib>Achuthan, Ajit</creatorcontrib><creatorcontrib>Marzocca, Pier</creatorcontrib><creatorcontrib>Grappasonni, Chiara</creatorcontrib><creatorcontrib>Coppotelli, Giuliano</creatorcontrib><title>Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>The development of a fiber Bragg grating (FBG) based distributed strain sensor system for real time structural health monitoring of a wind turbine rotor and its validation under a laboratory scale test setup is discussed in this paper. A 1 kW, 1.6 m diameter rotor, horizontal axis wind turbine with three instrumented blades is used in this study. The sensor system consists of strain sensors, surface mounted at various locations on the blade. At first the sensors are calibrated under static loading conditions to validate the FBG mounting and the proposed data collection techniques. Then, the capability of the sensor system coupled with the operational modal analysis (OMA) methods to capture natural frequencies and corresponding mode shapes in terms of distributed strains are validated under various non-rotating dynamic loading conditions. Finally, the sensor system is tested under rotating conditions using the wind flow from an open-jet wind tunnel, for both a baseline wind turbine and a wind turbine with a structurally modified blade. The blade was modified by attaching a lumped mass at the blade tip simulating structural damage or ice accretion. The dynamic characteristics of the baseline (healthy) blade and modified (altered) blade are compared to validate the sensor system's ability for real time structural health monitoring of the rotor.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Measurement and testing methods</subject><subject>Physics</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BCEXwUvdJE2T9OjfVRC8KHgLaTvVLG2yJqnitzfLLnv1NG-G35thHkLnlFxRotSC1IIXVDKxYGwhF0RWhMkDNKOloIUQ1fshmu2ZY3QS44oQSlVJZ8jewTcMfj2CS9j32OCHmyVuTIQOdzamYJspZZ2VsQ5HcNEHHH9jghH3Wf5Y1-E0hcY62FBTmxsz4E8wQ_rEo3c2-WDdxyk66s0Q4WxX5-jt4f719rF4flk-3V4_Fy3nIhUCasWavi4BqqYTvDRlC5J0Ik8EV7LiojOgGC0lhabvelYpYyhXphW17FQ5R5fbvevgvyaISY82tjAMxoGfoqa85ITVgrKMVlu0DT7GAL1eBzua8Ksp0Zto9SY2vYlNM6al3kabfRe7Eya2ZuiDca2NezOTggha1ZmjW876tV75Kbj8-D-7_wA_8ol_</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Arsenault, Tyler J</creator><creator>Achuthan, Ajit</creator><creator>Marzocca, Pier</creator><creator>Grappasonni, Chiara</creator><creator>Coppotelli, Giuliano</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20130701</creationdate><title>Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring</title><author>Arsenault, Tyler J ; Achuthan, Ajit ; Marzocca, Pier ; Grappasonni, Chiara ; Coppotelli, Giuliano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-6e982bf93ee5bd643a3ce70d693e6487546dae821371ebfdf258aa148ac697d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Measurement and testing methods</topic><topic>Physics</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arsenault, Tyler J</creatorcontrib><creatorcontrib>Achuthan, Ajit</creatorcontrib><creatorcontrib>Marzocca, Pier</creatorcontrib><creatorcontrib>Grappasonni, Chiara</creatorcontrib><creatorcontrib>Coppotelli, Giuliano</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arsenault, Tyler J</au><au>Achuthan, Ajit</au><au>Marzocca, Pier</au><au>Grappasonni, Chiara</au><au>Coppotelli, Giuliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>22</volume><issue>7</issue><spage>75027</spage><epage>1-11</epage><pages>75027-1-11</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>The development of a fiber Bragg grating (FBG) based distributed strain sensor system for real time structural health monitoring of a wind turbine rotor and its validation under a laboratory scale test setup is discussed in this paper. A 1 kW, 1.6 m diameter rotor, horizontal axis wind turbine with three instrumented blades is used in this study. The sensor system consists of strain sensors, surface mounted at various locations on the blade. At first the sensors are calibrated under static loading conditions to validate the FBG mounting and the proposed data collection techniques. Then, the capability of the sensor system coupled with the operational modal analysis (OMA) methods to capture natural frequencies and corresponding mode shapes in terms of distributed strains are validated under various non-rotating dynamic loading conditions. Finally, the sensor system is tested under rotating conditions using the wind flow from an open-jet wind tunnel, for both a baseline wind turbine and a wind turbine with a structurally modified blade. The blade was modified by attaching a lumped mass at the blade tip simulating structural damage or ice accretion. The dynamic characteristics of the baseline (healthy) blade and modified (altered) blade are compared to validate the sensor system's ability for real time structural health monitoring of the rotor.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0964-1726/22/7/075027</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1726 |
ispartof | Smart materials and structures, 2013-07, Vol.22 (7), p.75027-1-11 |
issn | 0964-1726 1361-665X |
language | eng |
recordid | cdi_proquest_miscellaneous_1434029612 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Measurement and testing methods Physics Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Solid mechanics Structural and continuum mechanics |
title | Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20FBG%20based%20distributed%20strain%20sensor%20system%20for%20wind%20turbine%20structural%20health%20monitoring&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Arsenault,%20Tyler%20J&rft.date=2013-07-01&rft.volume=22&rft.issue=7&rft.spage=75027&rft.epage=1-11&rft.pages=75027-1-11&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/0964-1726/22/7/075027&rft_dat=%3Cproquest_iop_j%3E1434029612%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1434029612&rft_id=info:pmid/&rfr_iscdi=true |