Novel statistical methods for integrating genetic and stable isotope data to infer individual-level migratory connectivity
Methods for determining patterns of migratory connectivity in animal ecology have historically been limited due to logistical challenges. Recent progress in studying migratory bird connectivity has been made using genetic and stable‐isotope markers to assign migratory individuals to their breeding g...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2013-08, Vol.22 (16), p.4163-4176 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4176 |
---|---|
container_issue | 16 |
container_start_page | 4163 |
container_title | Molecular ecology |
container_volume | 22 |
creator | Rundel, Colin W. Wunder, Michael B. Alvarado, Allison H. Ruegg, Kristen C. Harrigan, Ryan Schuh, Andrew Kelly, Jeffrey F. Siegel, Rodney B. DeSante, David F. Smith, Thomas B. Novembre, John |
description | Methods for determining patterns of migratory connectivity in animal ecology have historically been limited due to logistical challenges. Recent progress in studying migratory bird connectivity has been made using genetic and stable‐isotope markers to assign migratory individuals to their breeding grounds. Here, we present a novel Bayesian approach to jointly leverage genetic and isotopic markers and we test its utility on two migratory passerine bird species. Our approach represents a principled model‐based combination of genetic and isotope data from samples collected on the breeding grounds and is able to achieve levels of assignment accuracy that exceed those of either method alone. When applied at large scale the method can reveal specific migratory connectivity patterns. In Wilson's warblers (Wilsonia pusilla), we detect a subgroup of birds wintering in Baja that uniquely migrate preferentially from the coastal Pacific Northwest. Our approach is implemented in a way that is easily extended to accommodate additional sources of information (e.g. bi‐allelic markers, species distribution models, etc.) or adapted to other species or assignment problems.
See also the Perspective by Veen |
doi_str_mv | 10.1111/mec.12393 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434027923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1434027923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5203-7858c83ab20ebc46d46bd2de39910119b34fd5863c2f775a51413691addb82643</originalsourceid><addsrcrecordid>eNqN0s9rFDEUB_BBFLtWD_4DEhBBD9Pm12QmR1nbKtSKUG1vIZO8WVNnJmuSaV3_ejPdbQVBMJcc8nkvvHxTFM8JPiB5HQ5gDghlkj0oFoSJqqSSXz4sFlgKWhLcsL3iSYxXGBNGq-pxsZctFozJRfHrzF9Dj2LSycXkjO7RAOmbtxF1PiA3JliFfDau0ApGyALp0c6-7QG56JNfA7I6aZR85h3MRdZdOzvpvuxh7j64uYcPG2T8OIJJ-ThtnhaPOt1HeLbb94svx0fny_fl6aeTD8u3p6WpKGZl3VSNaZhuKYbWcGG5aC21wKQkmBDZMt7ZqhHM0K6uK10Rnt9AEm1t21DB2X7xett3HfyPCWJSg4sG-l6P4KeoCGcc01pS9h-USMZpc0tf_kWv_BTGPMisGkEFreus3myVCT7GAJ1aBzfosFEEqzk7lbNTt9ll-2LXcWoHsPfyLqwMXu2AjjmoLujRuPjH1YJXmMwDH27djeth8-8b1cej5d3V5bYi_wH4eV-hw3clalZX6uLsRF1-PV---ywuFGG_AYWqv48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418626277</pqid></control><display><type>article</type><title>Novel statistical methods for integrating genetic and stable isotope data to infer individual-level migratory connectivity</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Rundel, Colin W. ; Wunder, Michael B. ; Alvarado, Allison H. ; Ruegg, Kristen C. ; Harrigan, Ryan ; Schuh, Andrew ; Kelly, Jeffrey F. ; Siegel, Rodney B. ; DeSante, David F. ; Smith, Thomas B. ; Novembre, John</creator><creatorcontrib>Rundel, Colin W. ; Wunder, Michael B. ; Alvarado, Allison H. ; Ruegg, Kristen C. ; Harrigan, Ryan ; Schuh, Andrew ; Kelly, Jeffrey F. ; Siegel, Rodney B. ; DeSante, David F. ; Smith, Thomas B. ; Novembre, John</creatorcontrib><description>Methods for determining patterns of migratory connectivity in animal ecology have historically been limited due to logistical challenges. Recent progress in studying migratory bird connectivity has been made using genetic and stable‐isotope markers to assign migratory individuals to their breeding grounds. Here, we present a novel Bayesian approach to jointly leverage genetic and isotopic markers and we test its utility on two migratory passerine bird species. Our approach represents a principled model‐based combination of genetic and isotope data from samples collected on the breeding grounds and is able to achieve levels of assignment accuracy that exceed those of either method alone. When applied at large scale the method can reveal specific migratory connectivity patterns. In Wilson's warblers (Wilsonia pusilla), we detect a subgroup of birds wintering in Baja that uniquely migrate preferentially from the coastal Pacific Northwest. Our approach is implemented in a way that is easily extended to accommodate additional sources of information (e.g. bi‐allelic markers, species distribution models, etc.) or adapted to other species or assignment problems.
See also the Perspective by Veen</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.12393</identifier><identifier>PMID: 23906339</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Animal migration ; Animal Migration - physiology ; Animals ; Bayes Theorem ; Bayesian analysis ; Biological and medical sciences ; Biological evolution ; Birds ; Breeding ; California ; Fundamental and applied biological sciences. Psychology ; Genetic markers ; Genetics of eukaryotes. Biological and molecular evolution ; Genetics, Population - methods ; isoscape ; Isotopes ; microsatellite ; Microsatellite Repeats - genetics ; migratory connectivity ; Models, Statistical ; Northwestern United States ; Population genetics ; Population genetics, reproduction patterns ; Songbirds - classification ; Songbirds - genetics ; Songbirds - physiology ; spatial model ; stable isotope ; Wilsonia pusilla</subject><ispartof>Molecular ecology, 2013-08, Vol.22 (16), p.4163-4176</ispartof><rights>2013 John Wiley & Sons Ltd</rights><rights>2014 INIST-CNRS</rights><rights>2013 John Wiley & Sons Ltd.</rights><rights>Copyright © 2013 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5203-7858c83ab20ebc46d46bd2de39910119b34fd5863c2f775a51413691addb82643</citedby><cites>FETCH-LOGICAL-c5203-7858c83ab20ebc46d46bd2de39910119b34fd5863c2f775a51413691addb82643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.12393$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.12393$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27645014$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23906339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rundel, Colin W.</creatorcontrib><creatorcontrib>Wunder, Michael B.</creatorcontrib><creatorcontrib>Alvarado, Allison H.</creatorcontrib><creatorcontrib>Ruegg, Kristen C.</creatorcontrib><creatorcontrib>Harrigan, Ryan</creatorcontrib><creatorcontrib>Schuh, Andrew</creatorcontrib><creatorcontrib>Kelly, Jeffrey F.</creatorcontrib><creatorcontrib>Siegel, Rodney B.</creatorcontrib><creatorcontrib>DeSante, David F.</creatorcontrib><creatorcontrib>Smith, Thomas B.</creatorcontrib><creatorcontrib>Novembre, John</creatorcontrib><title>Novel statistical methods for integrating genetic and stable isotope data to infer individual-level migratory connectivity</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Methods for determining patterns of migratory connectivity in animal ecology have historically been limited due to logistical challenges. Recent progress in studying migratory bird connectivity has been made using genetic and stable‐isotope markers to assign migratory individuals to their breeding grounds. Here, we present a novel Bayesian approach to jointly leverage genetic and isotopic markers and we test its utility on two migratory passerine bird species. Our approach represents a principled model‐based combination of genetic and isotope data from samples collected on the breeding grounds and is able to achieve levels of assignment accuracy that exceed those of either method alone. When applied at large scale the method can reveal specific migratory connectivity patterns. In Wilson's warblers (Wilsonia pusilla), we detect a subgroup of birds wintering in Baja that uniquely migrate preferentially from the coastal Pacific Northwest. Our approach is implemented in a way that is easily extended to accommodate additional sources of information (e.g. bi‐allelic markers, species distribution models, etc.) or adapted to other species or assignment problems.
See also the Perspective by Veen</description><subject>Animal migration</subject><subject>Animal Migration - physiology</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biological and medical sciences</subject><subject>Biological evolution</subject><subject>Birds</subject><subject>Breeding</subject><subject>California</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic markers</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genetics, Population - methods</subject><subject>isoscape</subject><subject>Isotopes</subject><subject>microsatellite</subject><subject>Microsatellite Repeats - genetics</subject><subject>migratory connectivity</subject><subject>Models, Statistical</subject><subject>Northwestern United States</subject><subject>Population genetics</subject><subject>Population genetics, reproduction patterns</subject><subject>Songbirds - classification</subject><subject>Songbirds - genetics</subject><subject>Songbirds - physiology</subject><subject>spatial model</subject><subject>stable isotope</subject><subject>Wilsonia pusilla</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0s9rFDEUB_BBFLtWD_4DEhBBD9Pm12QmR1nbKtSKUG1vIZO8WVNnJmuSaV3_ejPdbQVBMJcc8nkvvHxTFM8JPiB5HQ5gDghlkj0oFoSJqqSSXz4sFlgKWhLcsL3iSYxXGBNGq-pxsZctFozJRfHrzF9Dj2LSycXkjO7RAOmbtxF1PiA3JliFfDau0ApGyALp0c6-7QG56JNfA7I6aZR85h3MRdZdOzvpvuxh7j64uYcPG2T8OIJJ-ThtnhaPOt1HeLbb94svx0fny_fl6aeTD8u3p6WpKGZl3VSNaZhuKYbWcGG5aC21wKQkmBDZMt7ZqhHM0K6uK10Rnt9AEm1t21DB2X7xett3HfyPCWJSg4sG-l6P4KeoCGcc01pS9h-USMZpc0tf_kWv_BTGPMisGkEFreus3myVCT7GAJ1aBzfosFEEqzk7lbNTt9ll-2LXcWoHsPfyLqwMXu2AjjmoLujRuPjH1YJXmMwDH27djeth8-8b1cej5d3V5bYi_wH4eV-hw3clalZX6uLsRF1-PV---ywuFGG_AYWqv48</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Rundel, Colin W.</creator><creator>Wunder, Michael B.</creator><creator>Alvarado, Allison H.</creator><creator>Ruegg, Kristen C.</creator><creator>Harrigan, Ryan</creator><creator>Schuh, Andrew</creator><creator>Kelly, Jeffrey F.</creator><creator>Siegel, Rodney B.</creator><creator>DeSante, David F.</creator><creator>Smith, Thomas B.</creator><creator>Novembre, John</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>201308</creationdate><title>Novel statistical methods for integrating genetic and stable isotope data to infer individual-level migratory connectivity</title><author>Rundel, Colin W. ; Wunder, Michael B. ; Alvarado, Allison H. ; Ruegg, Kristen C. ; Harrigan, Ryan ; Schuh, Andrew ; Kelly, Jeffrey F. ; Siegel, Rodney B. ; DeSante, David F. ; Smith, Thomas B. ; Novembre, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5203-7858c83ab20ebc46d46bd2de39910119b34fd5863c2f775a51413691addb82643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal migration</topic><topic>Animal Migration - physiology</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biological and medical sciences</topic><topic>Biological evolution</topic><topic>Birds</topic><topic>Breeding</topic><topic>California</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic markers</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genetics, Population - methods</topic><topic>isoscape</topic><topic>Isotopes</topic><topic>microsatellite</topic><topic>Microsatellite Repeats - genetics</topic><topic>migratory connectivity</topic><topic>Models, Statistical</topic><topic>Northwestern United States</topic><topic>Population genetics</topic><topic>Population genetics, reproduction patterns</topic><topic>Songbirds - classification</topic><topic>Songbirds - genetics</topic><topic>Songbirds - physiology</topic><topic>spatial model</topic><topic>stable isotope</topic><topic>Wilsonia pusilla</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rundel, Colin W.</creatorcontrib><creatorcontrib>Wunder, Michael B.</creatorcontrib><creatorcontrib>Alvarado, Allison H.</creatorcontrib><creatorcontrib>Ruegg, Kristen C.</creatorcontrib><creatorcontrib>Harrigan, Ryan</creatorcontrib><creatorcontrib>Schuh, Andrew</creatorcontrib><creatorcontrib>Kelly, Jeffrey F.</creatorcontrib><creatorcontrib>Siegel, Rodney B.</creatorcontrib><creatorcontrib>DeSante, David F.</creatorcontrib><creatorcontrib>Smith, Thomas B.</creatorcontrib><creatorcontrib>Novembre, John</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rundel, Colin W.</au><au>Wunder, Michael B.</au><au>Alvarado, Allison H.</au><au>Ruegg, Kristen C.</au><au>Harrigan, Ryan</au><au>Schuh, Andrew</au><au>Kelly, Jeffrey F.</au><au>Siegel, Rodney B.</au><au>DeSante, David F.</au><au>Smith, Thomas B.</au><au>Novembre, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel statistical methods for integrating genetic and stable isotope data to infer individual-level migratory connectivity</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2013-08</date><risdate>2013</risdate><volume>22</volume><issue>16</issue><spage>4163</spage><epage>4176</epage><pages>4163-4176</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Methods for determining patterns of migratory connectivity in animal ecology have historically been limited due to logistical challenges. Recent progress in studying migratory bird connectivity has been made using genetic and stable‐isotope markers to assign migratory individuals to their breeding grounds. Here, we present a novel Bayesian approach to jointly leverage genetic and isotopic markers and we test its utility on two migratory passerine bird species. Our approach represents a principled model‐based combination of genetic and isotope data from samples collected on the breeding grounds and is able to achieve levels of assignment accuracy that exceed those of either method alone. When applied at large scale the method can reveal specific migratory connectivity patterns. In Wilson's warblers (Wilsonia pusilla), we detect a subgroup of birds wintering in Baja that uniquely migrate preferentially from the coastal Pacific Northwest. Our approach is implemented in a way that is easily extended to accommodate additional sources of information (e.g. bi‐allelic markers, species distribution models, etc.) or adapted to other species or assignment problems.
See also the Perspective by Veen</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23906339</pmid><doi>10.1111/mec.12393</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2013-08, Vol.22 (16), p.4163-4176 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_1434027923 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Animal migration Animal Migration - physiology Animals Bayes Theorem Bayesian analysis Biological and medical sciences Biological evolution Birds Breeding California Fundamental and applied biological sciences. Psychology Genetic markers Genetics of eukaryotes. Biological and molecular evolution Genetics, Population - methods isoscape Isotopes microsatellite Microsatellite Repeats - genetics migratory connectivity Models, Statistical Northwestern United States Population genetics Population genetics, reproduction patterns Songbirds - classification Songbirds - genetics Songbirds - physiology spatial model stable isotope Wilsonia pusilla |
title | Novel statistical methods for integrating genetic and stable isotope data to infer individual-level migratory connectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20statistical%20methods%20for%20integrating%20genetic%20and%20stable%20isotope%20data%20to%20infer%20individual-level%20migratory%20connectivity&rft.jtitle=Molecular%20ecology&rft.au=Rundel,%20Colin%20W.&rft.date=2013-08&rft.volume=22&rft.issue=16&rft.spage=4163&rft.epage=4176&rft.pages=4163-4176&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.12393&rft_dat=%3Cproquest_cross%3E1434027923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418626277&rft_id=info:pmid/23906339&rfr_iscdi=true |