Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript

The discovery of novel gene fusions can lead to a better comprehension of cancer progression and development. The emergence of deep sequencing of trancriptome, known as RNA-seq, has opened many opportunities for the identification of this class of genomic alterations, leading to the discovery of nov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2012-12, Vol.28 (24), p.3232-3239
Hauptverfasser: BENELLI, Matteo, PESCUCCI, Chiara, MARSEGLIA, Giuseppina, SEVERGNINI, Marco, TORRICELLI, Francesca, MAGI, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3239
container_issue 24
container_start_page 3232
container_title Bioinformatics
container_volume 28
creator BENELLI, Matteo
PESCUCCI, Chiara
MARSEGLIA, Giuseppina
SEVERGNINI, Marco
TORRICELLI, Francesca
MAGI, Alberto
description The discovery of novel gene fusions can lead to a better comprehension of cancer progression and development. The emergence of deep sequencing of trancriptome, known as RNA-seq, has opened many opportunities for the identification of this class of genomic alterations, leading to the discovery of novel chimeric transcripts in melanomas, breast cancers and lymphomas. Nowadays, few computational approaches have been developed for the detection of chimeric transcripts. Although all of these computational methods show good sensitivity, much work remains to reduce the huge number of false-positive calls that arises from this analysis. We proposed a novel computational framework, named chimEric tranScript detection algorithm (EricScript), for the identification of gene fusion products in paired-end RNA-seq data. Our simulation study on synthetic data demonstrates that EricScript enables to achieve higher sensitivity and specificity than existing methods with noticeably lower running times. We also applied our method to publicly available RNA-seq tumour datasets, and we showed its capability in rediscovering known gene fusions.
doi_str_mv 10.1093/bioinformatics/bts617
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434027227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1434027227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-a2f6992d2dd3fdf801bae6050fdb2923a639bac18a4a4559d7af40f41b09b0f83</originalsourceid><addsrcrecordid>eNqFkMtOwkAUhidGI4g-gqYbEzeVuXXaLgniJSGSeFk3Z246hrYwU0x4ewdBjCtX5yy-_1w-hM4Jvia4ZEPpWtfY1tfQORWGsguC5AeoT5jIU14QcrjvMeuhkxA-MMYZzsQx6lEWRwhc9NHsxgXVfhrvmrdEvbs6dirpPDRBebfoQuKaZAHOG52aRidPj6M0mGWioYNErpNV2AQnMfT8zZ-iIwvzYM52dYBebycv4_t0Ort7GI-mqeJF1qVArShLqqnWzGpbYCLBiHie1ZKWlIFgpQRFCuDAs6zUOViOLScSlxLbgg3Q1XbuwrfLlQldVcdHzHwOjWlXoSKccUxzSvP_UcpyXJK4PKLZFlW-DcEbWy28q8GvK4Krjfbqr_Zqqz3mLnYrVrI2ep_68RyByx0AQcHcRr_KhV9OiIJnDLMvA_SQpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237091050</pqid></control><display><type>article</type><title>Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>BENELLI, Matteo ; PESCUCCI, Chiara ; MARSEGLIA, Giuseppina ; SEVERGNINI, Marco ; TORRICELLI, Francesca ; MAGI, Alberto</creator><creatorcontrib>BENELLI, Matteo ; PESCUCCI, Chiara ; MARSEGLIA, Giuseppina ; SEVERGNINI, Marco ; TORRICELLI, Francesca ; MAGI, Alberto</creatorcontrib><description>The discovery of novel gene fusions can lead to a better comprehension of cancer progression and development. The emergence of deep sequencing of trancriptome, known as RNA-seq, has opened many opportunities for the identification of this class of genomic alterations, leading to the discovery of novel chimeric transcripts in melanomas, breast cancers and lymphomas. Nowadays, few computational approaches have been developed for the detection of chimeric transcripts. Although all of these computational methods show good sensitivity, much work remains to reduce the huge number of false-positive calls that arises from this analysis. We proposed a novel computational framework, named chimEric tranScript detection algorithm (EricScript), for the identification of gene fusion products in paired-end RNA-seq data. Our simulation study on synthetic data demonstrates that EricScript enables to achieve higher sensitivity and specificity than existing methods with noticeably lower running times. We also applied our method to publicly available RNA-seq tumour datasets, and we showed its capability in rediscovering known gene fusions.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/bts617</identifier><identifier>PMID: 23093608</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biological and medical sciences ; Cell Line, Tumor ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Gene Fusion ; General aspects ; Genomics ; High-Throughput Nucleotide Sequencing ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; RNA, Neoplasm - chemistry ; Sequence Alignment ; Sequence Analysis, RNA - methods</subject><ispartof>Bioinformatics, 2012-12, Vol.28 (24), p.3232-3239</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-a2f6992d2dd3fdf801bae6050fdb2923a639bac18a4a4559d7af40f41b09b0f83</citedby><cites>FETCH-LOGICAL-c485t-a2f6992d2dd3fdf801bae6050fdb2923a639bac18a4a4559d7af40f41b09b0f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26684530$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23093608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BENELLI, Matteo</creatorcontrib><creatorcontrib>PESCUCCI, Chiara</creatorcontrib><creatorcontrib>MARSEGLIA, Giuseppina</creatorcontrib><creatorcontrib>SEVERGNINI, Marco</creatorcontrib><creatorcontrib>TORRICELLI, Francesca</creatorcontrib><creatorcontrib>MAGI, Alberto</creatorcontrib><title>Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>The discovery of novel gene fusions can lead to a better comprehension of cancer progression and development. The emergence of deep sequencing of trancriptome, known as RNA-seq, has opened many opportunities for the identification of this class of genomic alterations, leading to the discovery of novel chimeric transcripts in melanomas, breast cancers and lymphomas. Nowadays, few computational approaches have been developed for the detection of chimeric transcripts. Although all of these computational methods show good sensitivity, much work remains to reduce the huge number of false-positive calls that arises from this analysis. We proposed a novel computational framework, named chimEric tranScript detection algorithm (EricScript), for the identification of gene fusion products in paired-end RNA-seq data. Our simulation study on synthetic data demonstrates that EricScript enables to achieve higher sensitivity and specificity than existing methods with noticeably lower running times. We also applied our method to publicly available RNA-seq tumour datasets, and we showed its capability in rediscovering known gene fusions.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Tumor</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Gene Fusion</subject><subject>General aspects</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>RNA, Neoplasm - chemistry</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, RNA - methods</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwkAUhidGI4g-gqYbEzeVuXXaLgniJSGSeFk3Z246hrYwU0x4ewdBjCtX5yy-_1w-hM4Jvia4ZEPpWtfY1tfQORWGsguC5AeoT5jIU14QcrjvMeuhkxA-MMYZzsQx6lEWRwhc9NHsxgXVfhrvmrdEvbs6dirpPDRBebfoQuKaZAHOG52aRidPj6M0mGWioYNErpNV2AQnMfT8zZ-iIwvzYM52dYBebycv4_t0Ort7GI-mqeJF1qVArShLqqnWzGpbYCLBiHie1ZKWlIFgpQRFCuDAs6zUOViOLScSlxLbgg3Q1XbuwrfLlQldVcdHzHwOjWlXoSKccUxzSvP_UcpyXJK4PKLZFlW-DcEbWy28q8GvK4Krjfbqr_Zqqz3mLnYrVrI2ep_68RyByx0AQcHcRr_KhV9OiIJnDLMvA_SQpw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>BENELLI, Matteo</creator><creator>PESCUCCI, Chiara</creator><creator>MARSEGLIA, Giuseppina</creator><creator>SEVERGNINI, Marco</creator><creator>TORRICELLI, Francesca</creator><creator>MAGI, Alberto</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20121201</creationdate><title>Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript</title><author>BENELLI, Matteo ; PESCUCCI, Chiara ; MARSEGLIA, Giuseppina ; SEVERGNINI, Marco ; TORRICELLI, Francesca ; MAGI, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-a2f6992d2dd3fdf801bae6050fdb2923a639bac18a4a4559d7af40f41b09b0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Tumor</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Gene Fusion</topic><topic>General aspects</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>RNA, Neoplasm - chemistry</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, RNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BENELLI, Matteo</creatorcontrib><creatorcontrib>PESCUCCI, Chiara</creatorcontrib><creatorcontrib>MARSEGLIA, Giuseppina</creatorcontrib><creatorcontrib>SEVERGNINI, Marco</creatorcontrib><creatorcontrib>TORRICELLI, Francesca</creatorcontrib><creatorcontrib>MAGI, Alberto</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BENELLI, Matteo</au><au>PESCUCCI, Chiara</au><au>MARSEGLIA, Giuseppina</au><au>SEVERGNINI, Marco</au><au>TORRICELLI, Francesca</au><au>MAGI, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>28</volume><issue>24</issue><spage>3232</spage><epage>3239</epage><pages>3232-3239</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>The discovery of novel gene fusions can lead to a better comprehension of cancer progression and development. The emergence of deep sequencing of trancriptome, known as RNA-seq, has opened many opportunities for the identification of this class of genomic alterations, leading to the discovery of novel chimeric transcripts in melanomas, breast cancers and lymphomas. Nowadays, few computational approaches have been developed for the detection of chimeric transcripts. Although all of these computational methods show good sensitivity, much work remains to reduce the huge number of false-positive calls that arises from this analysis. We proposed a novel computational framework, named chimEric tranScript detection algorithm (EricScript), for the identification of gene fusion products in paired-end RNA-seq data. Our simulation study on synthetic data demonstrates that EricScript enables to achieve higher sensitivity and specificity than existing methods with noticeably lower running times. We also applied our method to publicly available RNA-seq tumour datasets, and we showed its capability in rediscovering known gene fusions.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>23093608</pmid><doi>10.1093/bioinformatics/bts617</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2012-12, Vol.28 (24), p.3232-3239
issn 1367-4803
1367-4811
1460-2059
language eng
recordid cdi_proquest_miscellaneous_1434027227
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Biological and medical sciences
Cell Line, Tumor
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling
Gene Fusion
General aspects
Genomics
High-Throughput Nucleotide Sequencing
Humans
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
RNA, Neoplasm - chemistry
Sequence Alignment
Sequence Analysis, RNA - methods
title Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20chimeric%20transcripts%20in%20paired-end%20RNA-seq%20data%20by%20using%20EricScript&rft.jtitle=Bioinformatics&rft.au=BENELLI,%20Matteo&rft.date=2012-12-01&rft.volume=28&rft.issue=24&rft.spage=3232&rft.epage=3239&rft.pages=3232-3239&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/bts617&rft_dat=%3Cproquest_cross%3E1434027227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237091050&rft_id=info:pmid/23093608&rfr_iscdi=true