Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript
The discovery of novel gene fusions can lead to a better comprehension of cancer progression and development. The emergence of deep sequencing of trancriptome, known as RNA-seq, has opened many opportunities for the identification of this class of genomic alterations, leading to the discovery of nov...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2012-12, Vol.28 (24), p.3232-3239 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3239 |
---|---|
container_issue | 24 |
container_start_page | 3232 |
container_title | Bioinformatics |
container_volume | 28 |
creator | BENELLI, Matteo PESCUCCI, Chiara MARSEGLIA, Giuseppina SEVERGNINI, Marco TORRICELLI, Francesca MAGI, Alberto |
description | The discovery of novel gene fusions can lead to a better comprehension of cancer progression and development. The emergence of deep sequencing of trancriptome, known as RNA-seq, has opened many opportunities for the identification of this class of genomic alterations, leading to the discovery of novel chimeric transcripts in melanomas, breast cancers and lymphomas. Nowadays, few computational approaches have been developed for the detection of chimeric transcripts. Although all of these computational methods show good sensitivity, much work remains to reduce the huge number of false-positive calls that arises from this analysis.
We proposed a novel computational framework, named chimEric tranScript detection algorithm (EricScript), for the identification of gene fusion products in paired-end RNA-seq data. Our simulation study on synthetic data demonstrates that EricScript enables to achieve higher sensitivity and specificity than existing methods with noticeably lower running times. We also applied our method to publicly available RNA-seq tumour datasets, and we showed its capability in rediscovering known gene fusions. |
doi_str_mv | 10.1093/bioinformatics/bts617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434027227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1434027227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-a2f6992d2dd3fdf801bae6050fdb2923a639bac18a4a4559d7af40f41b09b0f83</originalsourceid><addsrcrecordid>eNqFkMtOwkAUhidGI4g-gqYbEzeVuXXaLgniJSGSeFk3Z246hrYwU0x4ewdBjCtX5yy-_1w-hM4Jvia4ZEPpWtfY1tfQORWGsguC5AeoT5jIU14QcrjvMeuhkxA-MMYZzsQx6lEWRwhc9NHsxgXVfhrvmrdEvbs6dirpPDRBebfoQuKaZAHOG52aRidPj6M0mGWioYNErpNV2AQnMfT8zZ-iIwvzYM52dYBebycv4_t0Ort7GI-mqeJF1qVArShLqqnWzGpbYCLBiHie1ZKWlIFgpQRFCuDAs6zUOViOLScSlxLbgg3Q1XbuwrfLlQldVcdHzHwOjWlXoSKccUxzSvP_UcpyXJK4PKLZFlW-DcEbWy28q8GvK4Krjfbqr_Zqqz3mLnYrVrI2ep_68RyByx0AQcHcRr_KhV9OiIJnDLMvA_SQpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237091050</pqid></control><display><type>article</type><title>Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>BENELLI, Matteo ; PESCUCCI, Chiara ; MARSEGLIA, Giuseppina ; SEVERGNINI, Marco ; TORRICELLI, Francesca ; MAGI, Alberto</creator><creatorcontrib>BENELLI, Matteo ; PESCUCCI, Chiara ; MARSEGLIA, Giuseppina ; SEVERGNINI, Marco ; TORRICELLI, Francesca ; MAGI, Alberto</creatorcontrib><description>The discovery of novel gene fusions can lead to a better comprehension of cancer progression and development. The emergence of deep sequencing of trancriptome, known as RNA-seq, has opened many opportunities for the identification of this class of genomic alterations, leading to the discovery of novel chimeric transcripts in melanomas, breast cancers and lymphomas. Nowadays, few computational approaches have been developed for the detection of chimeric transcripts. Although all of these computational methods show good sensitivity, much work remains to reduce the huge number of false-positive calls that arises from this analysis.
We proposed a novel computational framework, named chimEric tranScript detection algorithm (EricScript), for the identification of gene fusion products in paired-end RNA-seq data. Our simulation study on synthetic data demonstrates that EricScript enables to achieve higher sensitivity and specificity than existing methods with noticeably lower running times. We also applied our method to publicly available RNA-seq tumour datasets, and we showed its capability in rediscovering known gene fusions.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/bts617</identifier><identifier>PMID: 23093608</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biological and medical sciences ; Cell Line, Tumor ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Gene Fusion ; General aspects ; Genomics ; High-Throughput Nucleotide Sequencing ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; RNA, Neoplasm - chemistry ; Sequence Alignment ; Sequence Analysis, RNA - methods</subject><ispartof>Bioinformatics, 2012-12, Vol.28 (24), p.3232-3239</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-a2f6992d2dd3fdf801bae6050fdb2923a639bac18a4a4559d7af40f41b09b0f83</citedby><cites>FETCH-LOGICAL-c485t-a2f6992d2dd3fdf801bae6050fdb2923a639bac18a4a4559d7af40f41b09b0f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26684530$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23093608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BENELLI, Matteo</creatorcontrib><creatorcontrib>PESCUCCI, Chiara</creatorcontrib><creatorcontrib>MARSEGLIA, Giuseppina</creatorcontrib><creatorcontrib>SEVERGNINI, Marco</creatorcontrib><creatorcontrib>TORRICELLI, Francesca</creatorcontrib><creatorcontrib>MAGI, Alberto</creatorcontrib><title>Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>The discovery of novel gene fusions can lead to a better comprehension of cancer progression and development. The emergence of deep sequencing of trancriptome, known as RNA-seq, has opened many opportunities for the identification of this class of genomic alterations, leading to the discovery of novel chimeric transcripts in melanomas, breast cancers and lymphomas. Nowadays, few computational approaches have been developed for the detection of chimeric transcripts. Although all of these computational methods show good sensitivity, much work remains to reduce the huge number of false-positive calls that arises from this analysis.
We proposed a novel computational framework, named chimEric tranScript detection algorithm (EricScript), for the identification of gene fusion products in paired-end RNA-seq data. Our simulation study on synthetic data demonstrates that EricScript enables to achieve higher sensitivity and specificity than existing methods with noticeably lower running times. We also applied our method to publicly available RNA-seq tumour datasets, and we showed its capability in rediscovering known gene fusions.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Tumor</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Gene Fusion</subject><subject>General aspects</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>RNA, Neoplasm - chemistry</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, RNA - methods</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwkAUhidGI4g-gqYbEzeVuXXaLgniJSGSeFk3Z246hrYwU0x4ewdBjCtX5yy-_1w-hM4Jvia4ZEPpWtfY1tfQORWGsguC5AeoT5jIU14QcrjvMeuhkxA-MMYZzsQx6lEWRwhc9NHsxgXVfhrvmrdEvbs6dirpPDRBebfoQuKaZAHOG52aRidPj6M0mGWioYNErpNV2AQnMfT8zZ-iIwvzYM52dYBebycv4_t0Ort7GI-mqeJF1qVArShLqqnWzGpbYCLBiHie1ZKWlIFgpQRFCuDAs6zUOViOLScSlxLbgg3Q1XbuwrfLlQldVcdHzHwOjWlXoSKccUxzSvP_UcpyXJK4PKLZFlW-DcEbWy28q8GvK4Krjfbqr_Zqqz3mLnYrVrI2ep_68RyByx0AQcHcRr_KhV9OiIJnDLMvA_SQpw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>BENELLI, Matteo</creator><creator>PESCUCCI, Chiara</creator><creator>MARSEGLIA, Giuseppina</creator><creator>SEVERGNINI, Marco</creator><creator>TORRICELLI, Francesca</creator><creator>MAGI, Alberto</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20121201</creationdate><title>Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript</title><author>BENELLI, Matteo ; PESCUCCI, Chiara ; MARSEGLIA, Giuseppina ; SEVERGNINI, Marco ; TORRICELLI, Francesca ; MAGI, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-a2f6992d2dd3fdf801bae6050fdb2923a639bac18a4a4559d7af40f41b09b0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Tumor</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Gene Fusion</topic><topic>General aspects</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>RNA, Neoplasm - chemistry</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, RNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BENELLI, Matteo</creatorcontrib><creatorcontrib>PESCUCCI, Chiara</creatorcontrib><creatorcontrib>MARSEGLIA, Giuseppina</creatorcontrib><creatorcontrib>SEVERGNINI, Marco</creatorcontrib><creatorcontrib>TORRICELLI, Francesca</creatorcontrib><creatorcontrib>MAGI, Alberto</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BENELLI, Matteo</au><au>PESCUCCI, Chiara</au><au>MARSEGLIA, Giuseppina</au><au>SEVERGNINI, Marco</au><au>TORRICELLI, Francesca</au><au>MAGI, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>28</volume><issue>24</issue><spage>3232</spage><epage>3239</epage><pages>3232-3239</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>The discovery of novel gene fusions can lead to a better comprehension of cancer progression and development. The emergence of deep sequencing of trancriptome, known as RNA-seq, has opened many opportunities for the identification of this class of genomic alterations, leading to the discovery of novel chimeric transcripts in melanomas, breast cancers and lymphomas. Nowadays, few computational approaches have been developed for the detection of chimeric transcripts. Although all of these computational methods show good sensitivity, much work remains to reduce the huge number of false-positive calls that arises from this analysis.
We proposed a novel computational framework, named chimEric tranScript detection algorithm (EricScript), for the identification of gene fusion products in paired-end RNA-seq data. Our simulation study on synthetic data demonstrates that EricScript enables to achieve higher sensitivity and specificity than existing methods with noticeably lower running times. We also applied our method to publicly available RNA-seq tumour datasets, and we showed its capability in rediscovering known gene fusions.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>23093608</pmid><doi>10.1093/bioinformatics/bts617</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2012-12, Vol.28 (24), p.3232-3239 |
issn | 1367-4803 1367-4811 1460-2059 |
language | eng |
recordid | cdi_proquest_miscellaneous_1434027227 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Biological and medical sciences Cell Line, Tumor Fundamental and applied biological sciences. Psychology Gene Expression Profiling Gene Fusion General aspects Genomics High-Throughput Nucleotide Sequencing Humans Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) RNA, Neoplasm - chemistry Sequence Alignment Sequence Analysis, RNA - methods |
title | Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20chimeric%20transcripts%20in%20paired-end%20RNA-seq%20data%20by%20using%20EricScript&rft.jtitle=Bioinformatics&rft.au=BENELLI,%20Matteo&rft.date=2012-12-01&rft.volume=28&rft.issue=24&rft.spage=3232&rft.epage=3239&rft.pages=3232-3239&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/bts617&rft_dat=%3Cproquest_cross%3E1434027227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237091050&rft_id=info:pmid/23093608&rfr_iscdi=true |