Kinetic energy spectra characteristics of two convection‐permitting limited‐area models AROME and Meso‐NH

Kinetic energy (KE) spectra are applied to evaluate two convection‐permitting models: the AROME numerical weather prediction operational model and the Meso‐NH research model, that share the same physics and differ only in the dynamics (semi‐Lagrangian semi‐implicit versus Eulerian explicit schemes)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society 2013-07, Vol.139 (674), p.1327-1341
Hauptverfasser: Ricard, D., Lac, C., Riette, S., Legrand, R., Mary, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1341
container_issue 674
container_start_page 1327
container_title Quarterly journal of the Royal Meteorological Society
container_volume 139
creator Ricard, D.
Lac, C.
Riette, S.
Legrand, R.
Mary, A.
description Kinetic energy (KE) spectra are applied to evaluate two convection‐permitting models: the AROME numerical weather prediction operational model and the Meso‐NH research model, that share the same physics and differ only in the dynamics (semi‐Lagrangian semi‐implicit versus Eulerian explicit schemes). A first analysis of AROME spectra for winter and summer seasons shows that the model‐derived spectra match the observational spectra well, including the transition between k−3 and k−5/3 regimes. The vertical distribution of the spectra is coherent with previous observational and numerical studies and the diurnal cycle has a strong impact on the amount of KE in the mesoscale during summer. A comparative analysis of KE spectra for both models is then performed on a real case of individual convective cells that developed over plains, during the afternoon of 11 April 2007, characterized by a strong cold air outflow in the low levels. AROME spectra are characterized by a coarser effective resolution than Meso‐NH, even without explicit diffusion, revealing the impact of the implicit diffusion of the semi‐implicit semi‐Lagrangian scheme used in AROME. For large time steps, the damping increases and can be attributed preferentially to the SI part of the SISL (semi‐implicit semi‐Lagrangian) formulation. Adiabatic runs show that the transition to a shallow mesoscale regime is still apparent even if the mesoscale KE variance strongly depends on the presence of the physical processes. Effective resolution of Meso‐NH remains around 4–6Δx for horizontal grid spacings between 2.5 km and 250 m. The effects of subgrid mixing schemes are also investigated with Meso‐NH at 500 m horizontal grid spacing in the grey zone for turbulence, illustrating the difficulty in finding a good equilibrium between resolved and subgrid mixing at this scale.
doi_str_mv 10.1002/qj.2025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434025823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3033872831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4185-9898e5d962fd83928c4e27afa10796d08465ac128f0c7533c0f19f0bb5e4ae6a3</originalsourceid><addsrcrecordid>eNp10NFqFDEUBuAgCq5VfIWAiAXZepKZTJLLUqptbS2KgnfDaeakZplNdpNZy975CD6jT2LWLV4IXuWQ8_Fz-Bl7LuBIAMg368WRBKkesJlotZ4bDV8fshlAo-YWwD5mT0pZAIDSUs9Yeh8iTcFxipRvt7ysyE0ZufuGGd1EOZS6LTx5Pt0l7lL8XkFI8dePnyvKyzBNId7yMdSJhvqJmZAv00Bj4cefrq9OOcaBX1FJdfnh7Cl75HEs9Oz-PWBf3p5-PjmbX16_Oz85vpy7Vph6qbGG1GA76QfTWGlcS1KjRwHadgOYtlPohDQenFZN48AL6-HmRlGL1GFzwA73uauc1hsqU78MxdE4YqS0Kb1om7a2ZGRT6Yt_6CJtcqzXVSU6CcK2O_Vqr1xOpWTy_SqHJeZtL6DfFd-vF_2u-Cpf3udhcTj6jNGF8pdLrVQjwVb3eu_uwkjb_8X1Hy_-pP4Gy1ySsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1416201943</pqid></control><display><type>article</type><title>Kinetic energy spectra characteristics of two convection‐permitting limited‐area models AROME and Meso‐NH</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ricard, D. ; Lac, C. ; Riette, S. ; Legrand, R. ; Mary, A.</creator><creatorcontrib>Ricard, D. ; Lac, C. ; Riette, S. ; Legrand, R. ; Mary, A.</creatorcontrib><description>Kinetic energy (KE) spectra are applied to evaluate two convection‐permitting models: the AROME numerical weather prediction operational model and the Meso‐NH research model, that share the same physics and differ only in the dynamics (semi‐Lagrangian semi‐implicit versus Eulerian explicit schemes). A first analysis of AROME spectra for winter and summer seasons shows that the model‐derived spectra match the observational spectra well, including the transition between k−3 and k−5/3 regimes. The vertical distribution of the spectra is coherent with previous observational and numerical studies and the diurnal cycle has a strong impact on the amount of KE in the mesoscale during summer. A comparative analysis of KE spectra for both models is then performed on a real case of individual convective cells that developed over plains, during the afternoon of 11 April 2007, characterized by a strong cold air outflow in the low levels. AROME spectra are characterized by a coarser effective resolution than Meso‐NH, even without explicit diffusion, revealing the impact of the implicit diffusion of the semi‐implicit semi‐Lagrangian scheme used in AROME. For large time steps, the damping increases and can be attributed preferentially to the SI part of the SISL (semi‐implicit semi‐Lagrangian) formulation. Adiabatic runs show that the transition to a shallow mesoscale regime is still apparent even if the mesoscale KE variance strongly depends on the presence of the physical processes. Effective resolution of Meso‐NH remains around 4–6Δx for horizontal grid spacings between 2.5 km and 250 m. The effects of subgrid mixing schemes are also investigated with Meso‐NH at 500 m horizontal grid spacing in the grey zone for turbulence, illustrating the difficulty in finding a good equilibrium between resolved and subgrid mixing at this scale.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.2025</identifier><identifier>CODEN: QJRMAM</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adiabatic flow ; Coarsening ; convective cells ; Diffusion ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; high‐resolution simulations ; Horizontal ; Kinetic energy ; kinetic energy spectra ; Mathematical models ; Meteorology ; Physics of the high neutral atmosphere ; Spectra ; Studies ; Summer</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2013-07, Vol.139 (674), p.1327-1341</ispartof><rights>2012 Royal Meteorological Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4185-9898e5d962fd83928c4e27afa10796d08465ac128f0c7533c0f19f0bb5e4ae6a3</citedby><cites>FETCH-LOGICAL-c4185-9898e5d962fd83928c4e27afa10796d08465ac128f0c7533c0f19f0bb5e4ae6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.2025$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.2025$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27553209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ricard, D.</creatorcontrib><creatorcontrib>Lac, C.</creatorcontrib><creatorcontrib>Riette, S.</creatorcontrib><creatorcontrib>Legrand, R.</creatorcontrib><creatorcontrib>Mary, A.</creatorcontrib><title>Kinetic energy spectra characteristics of two convection‐permitting limited‐area models AROME and Meso‐NH</title><title>Quarterly journal of the Royal Meteorological Society</title><description>Kinetic energy (KE) spectra are applied to evaluate two convection‐permitting models: the AROME numerical weather prediction operational model and the Meso‐NH research model, that share the same physics and differ only in the dynamics (semi‐Lagrangian semi‐implicit versus Eulerian explicit schemes). A first analysis of AROME spectra for winter and summer seasons shows that the model‐derived spectra match the observational spectra well, including the transition between k−3 and k−5/3 regimes. The vertical distribution of the spectra is coherent with previous observational and numerical studies and the diurnal cycle has a strong impact on the amount of KE in the mesoscale during summer. A comparative analysis of KE spectra for both models is then performed on a real case of individual convective cells that developed over plains, during the afternoon of 11 April 2007, characterized by a strong cold air outflow in the low levels. AROME spectra are characterized by a coarser effective resolution than Meso‐NH, even without explicit diffusion, revealing the impact of the implicit diffusion of the semi‐implicit semi‐Lagrangian scheme used in AROME. For large time steps, the damping increases and can be attributed preferentially to the SI part of the SISL (semi‐implicit semi‐Lagrangian) formulation. Adiabatic runs show that the transition to a shallow mesoscale regime is still apparent even if the mesoscale KE variance strongly depends on the presence of the physical processes. Effective resolution of Meso‐NH remains around 4–6Δx for horizontal grid spacings between 2.5 km and 250 m. The effects of subgrid mixing schemes are also investigated with Meso‐NH at 500 m horizontal grid spacing in the grey zone for turbulence, illustrating the difficulty in finding a good equilibrium between resolved and subgrid mixing at this scale.</description><subject>Adiabatic flow</subject><subject>Coarsening</subject><subject>convective cells</subject><subject>Diffusion</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>high‐resolution simulations</subject><subject>Horizontal</subject><subject>Kinetic energy</subject><subject>kinetic energy spectra</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Physics of the high neutral atmosphere</subject><subject>Spectra</subject><subject>Studies</subject><subject>Summer</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10NFqFDEUBuAgCq5VfIWAiAXZepKZTJLLUqptbS2KgnfDaeakZplNdpNZy975CD6jT2LWLV4IXuWQ8_Fz-Bl7LuBIAMg368WRBKkesJlotZ4bDV8fshlAo-YWwD5mT0pZAIDSUs9Yeh8iTcFxipRvt7ysyE0ZufuGGd1EOZS6LTx5Pt0l7lL8XkFI8dePnyvKyzBNId7yMdSJhvqJmZAv00Bj4cefrq9OOcaBX1FJdfnh7Cl75HEs9Oz-PWBf3p5-PjmbX16_Oz85vpy7Vph6qbGG1GA76QfTWGlcS1KjRwHadgOYtlPohDQenFZN48AL6-HmRlGL1GFzwA73uauc1hsqU78MxdE4YqS0Kb1om7a2ZGRT6Yt_6CJtcqzXVSU6CcK2O_Vqr1xOpWTy_SqHJeZtL6DfFd-vF_2u-Cpf3udhcTj6jNGF8pdLrVQjwVb3eu_uwkjb_8X1Hy_-pP4Gy1ySsQ</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Ricard, D.</creator><creator>Lac, C.</creator><creator>Riette, S.</creator><creator>Legrand, R.</creator><creator>Mary, A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201307</creationdate><title>Kinetic energy spectra characteristics of two convection‐permitting limited‐area models AROME and Meso‐NH</title><author>Ricard, D. ; Lac, C. ; Riette, S. ; Legrand, R. ; Mary, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4185-9898e5d962fd83928c4e27afa10796d08465ac128f0c7533c0f19f0bb5e4ae6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adiabatic flow</topic><topic>Coarsening</topic><topic>convective cells</topic><topic>Diffusion</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>high‐resolution simulations</topic><topic>Horizontal</topic><topic>Kinetic energy</topic><topic>kinetic energy spectra</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Physics of the high neutral atmosphere</topic><topic>Spectra</topic><topic>Studies</topic><topic>Summer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ricard, D.</creatorcontrib><creatorcontrib>Lac, C.</creatorcontrib><creatorcontrib>Riette, S.</creatorcontrib><creatorcontrib>Legrand, R.</creatorcontrib><creatorcontrib>Mary, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ricard, D.</au><au>Lac, C.</au><au>Riette, S.</au><au>Legrand, R.</au><au>Mary, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic energy spectra characteristics of two convection‐permitting limited‐area models AROME and Meso‐NH</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2013-07</date><risdate>2013</risdate><volume>139</volume><issue>674</issue><spage>1327</spage><epage>1341</epage><pages>1327-1341</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><coden>QJRMAM</coden><abstract>Kinetic energy (KE) spectra are applied to evaluate two convection‐permitting models: the AROME numerical weather prediction operational model and the Meso‐NH research model, that share the same physics and differ only in the dynamics (semi‐Lagrangian semi‐implicit versus Eulerian explicit schemes). A first analysis of AROME spectra for winter and summer seasons shows that the model‐derived spectra match the observational spectra well, including the transition between k−3 and k−5/3 regimes. The vertical distribution of the spectra is coherent with previous observational and numerical studies and the diurnal cycle has a strong impact on the amount of KE in the mesoscale during summer. A comparative analysis of KE spectra for both models is then performed on a real case of individual convective cells that developed over plains, during the afternoon of 11 April 2007, characterized by a strong cold air outflow in the low levels. AROME spectra are characterized by a coarser effective resolution than Meso‐NH, even without explicit diffusion, revealing the impact of the implicit diffusion of the semi‐implicit semi‐Lagrangian scheme used in AROME. For large time steps, the damping increases and can be attributed preferentially to the SI part of the SISL (semi‐implicit semi‐Lagrangian) formulation. Adiabatic runs show that the transition to a shallow mesoscale regime is still apparent even if the mesoscale KE variance strongly depends on the presence of the physical processes. Effective resolution of Meso‐NH remains around 4–6Δx for horizontal grid spacings between 2.5 km and 250 m. The effects of subgrid mixing schemes are also investigated with Meso‐NH at 500 m horizontal grid spacing in the grey zone for turbulence, illustrating the difficulty in finding a good equilibrium between resolved and subgrid mixing at this scale.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/qj.2025</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9009
ispartof Quarterly journal of the Royal Meteorological Society, 2013-07, Vol.139 (674), p.1327-1341
issn 0035-9009
1477-870X
language eng
recordid cdi_proquest_miscellaneous_1434025823
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adiabatic flow
Coarsening
convective cells
Diffusion
Earth, ocean, space
Exact sciences and technology
External geophysics
high‐resolution simulations
Horizontal
Kinetic energy
kinetic energy spectra
Mathematical models
Meteorology
Physics of the high neutral atmosphere
Spectra
Studies
Summer
title Kinetic energy spectra characteristics of two convection‐permitting limited‐area models AROME and Meso‐NH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20energy%20spectra%20characteristics%20of%20two%20convection%E2%80%90permitting%20limited%E2%80%90area%20models%20AROME%20and%20Meso%E2%80%90NH&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Ricard,%20D.&rft.date=2013-07&rft.volume=139&rft.issue=674&rft.spage=1327&rft.epage=1341&rft.pages=1327-1341&rft.issn=0035-9009&rft.eissn=1477-870X&rft.coden=QJRMAM&rft_id=info:doi/10.1002/qj.2025&rft_dat=%3Cproquest_cross%3E3033872831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1416201943&rft_id=info:pmid/&rfr_iscdi=true