Synaptic plasticity in neuronal circuits regulating energy balance

Energy balance is maintained by neuronal populations throughout the central nervous system, but is primarily localized in the mediobasal hypothalamus. In this review, the authors discuss recent work examining plastic changes in hypothalamic circuits in response changes in nutrient availability and l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2012-10, Vol.15 (10), p.1336-1342
Hauptverfasser: Zeltser, Lori M, Seeley, Randy J, Tschöp, Matthias H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1342
container_issue 10
container_start_page 1336
container_title Nature neuroscience
container_volume 15
creator Zeltser, Lori M
Seeley, Randy J
Tschöp, Matthias H
description Energy balance is maintained by neuronal populations throughout the central nervous system, but is primarily localized in the mediobasal hypothalamus. In this review, the authors discuss recent work examining plastic changes in hypothalamic circuits in response changes in nutrient availability and long-term energy status. Maintaining energy balance is of paramount importance for metabolic health and survival. It is achieved through the coordinated regulation of neuronal circuits that control a wide range of physiological processes affecting energy intake and expenditure, such as feeding, metabolic rate, locomotor activity, arousal, growth and reproduction. Neuronal populations distributed throughout the CNS but highly enriched in the mediobasal hypothalamus, sense hormonal, nutrient and neuronal signals of systemic energy status and relay this information to secondary neurons that integrate the information and regulate distinct physiological parameters in a manner that promotes energy homeostasis. To achieve this, it is critical that neuronal circuits provide information about short-term changes in nutrient availability in the larger context of long-term energy status. For example, the same signals lead to different cellular and physiological responses if delivered under fasted versus fed conditions. Thus, there is a clear need to have mechanisms that rapidly and reversibly adjust responsiveness of hypothalamic circuits to acute changes in nutrient availability.
doi_str_mv 10.1038/nn.3219
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434025788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A304942713</galeid><sourcerecordid>A304942713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-72b2c0332b8c0e7a005cd95992a535a621c268e6d7594d4e32878abc7e938bc93</originalsourceid><addsrcrecordid>eNqFkl1LHTEQhoMo1driPygLXrRe7Gm-Py6ttCoIQm2vQzY7Z4nsyZ4mWej5981BW3tEkFzMkDzzMu9kEDoheEEw059jXDBKzB46IoLLligq92uOjWolFfIQvc35HmOshDZv0CFlNSVaH6Evd5vo1iX4Zj26XGMomybEJsKcpujGxofk51Byk2CYR1dCHBqIkIZN07nRRQ_v0MHSjRneP8Zj9PPb1x8XV-3N7eX1xflN6wWnpVW0ox4zRjvtMSiHsfC9EcZQJ5hwkhJPpQbZK2F4z4FRrbTrvALDdOcNO0afHnTXafo1Qy52FbKHsTYB05wt4YxjKpTWr6NYY0kYIbSip8_Q-2lO1fmWkobXgRHyRA1uBBvicirJ-a2oPWeYG04VYZVavEDV08Mq-CnCMtT7nYKznYLKFPhdBjfnbK_vvu-yHx9Yn6acEyztOoWVS5vap90ugY3Rbpegkh8eLc3dCvp_3N9ffxpPrk9xgPS_512tP4NgtRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069458911</pqid></control><display><type>article</type><title>Synaptic plasticity in neuronal circuits regulating energy balance</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Zeltser, Lori M ; Seeley, Randy J ; Tschöp, Matthias H</creator><creatorcontrib>Zeltser, Lori M ; Seeley, Randy J ; Tschöp, Matthias H</creatorcontrib><description>Energy balance is maintained by neuronal populations throughout the central nervous system, but is primarily localized in the mediobasal hypothalamus. In this review, the authors discuss recent work examining plastic changes in hypothalamic circuits in response changes in nutrient availability and long-term energy status. Maintaining energy balance is of paramount importance for metabolic health and survival. It is achieved through the coordinated regulation of neuronal circuits that control a wide range of physiological processes affecting energy intake and expenditure, such as feeding, metabolic rate, locomotor activity, arousal, growth and reproduction. Neuronal populations distributed throughout the CNS but highly enriched in the mediobasal hypothalamus, sense hormonal, nutrient and neuronal signals of systemic energy status and relay this information to secondary neurons that integrate the information and regulate distinct physiological parameters in a manner that promotes energy homeostasis. To achieve this, it is critical that neuronal circuits provide information about short-term changes in nutrient availability in the larger context of long-term energy status. For example, the same signals lead to different cellular and physiological responses if delivered under fasted versus fed conditions. Thus, there is a clear need to have mechanisms that rapidly and reversibly adjust responsiveness of hypothalamic circuits to acute changes in nutrient availability.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3219</identifier><identifier>PMID: 23007188</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1488 ; 631/378/2591 ; Agouti-Related Protein - physiology ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Central nervous system ; Diabetes ; Energy ; Energy Metabolism - physiology ; Hypothalamus ; Hypothalamus - physiology ; Melanocortins - physiology ; Metabolism ; Models, Neurological ; Neural Pathways - physiology ; Neurobiology ; Neuronal Plasticity - physiology ; Neurons ; Neuropeptide Y - physiology ; Neuroplasticity ; Neurosciences ; Obesity ; Peptides ; Physiological aspects ; Physiology ; Pro-Opiomelanocortin - physiology ; review-article ; Synaptic Transmission - physiology</subject><ispartof>Nature neuroscience, 2012-10, Vol.15 (10), p.1336-1342</ispartof><rights>Springer Nature America, Inc. 2012</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-72b2c0332b8c0e7a005cd95992a535a621c268e6d7594d4e32878abc7e938bc93</citedby><cites>FETCH-LOGICAL-c542t-72b2c0332b8c0e7a005cd95992a535a621c268e6d7594d4e32878abc7e938bc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23007188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeltser, Lori M</creatorcontrib><creatorcontrib>Seeley, Randy J</creatorcontrib><creatorcontrib>Tschöp, Matthias H</creatorcontrib><title>Synaptic plasticity in neuronal circuits regulating energy balance</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Energy balance is maintained by neuronal populations throughout the central nervous system, but is primarily localized in the mediobasal hypothalamus. In this review, the authors discuss recent work examining plastic changes in hypothalamic circuits in response changes in nutrient availability and long-term energy status. Maintaining energy balance is of paramount importance for metabolic health and survival. It is achieved through the coordinated regulation of neuronal circuits that control a wide range of physiological processes affecting energy intake and expenditure, such as feeding, metabolic rate, locomotor activity, arousal, growth and reproduction. Neuronal populations distributed throughout the CNS but highly enriched in the mediobasal hypothalamus, sense hormonal, nutrient and neuronal signals of systemic energy status and relay this information to secondary neurons that integrate the information and regulate distinct physiological parameters in a manner that promotes energy homeostasis. To achieve this, it is critical that neuronal circuits provide information about short-term changes in nutrient availability in the larger context of long-term energy status. For example, the same signals lead to different cellular and physiological responses if delivered under fasted versus fed conditions. Thus, there is a clear need to have mechanisms that rapidly and reversibly adjust responsiveness of hypothalamic circuits to acute changes in nutrient availability.</description><subject>631/378/1488</subject><subject>631/378/2591</subject><subject>Agouti-Related Protein - physiology</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Central nervous system</subject><subject>Diabetes</subject><subject>Energy</subject><subject>Energy Metabolism - physiology</subject><subject>Hypothalamus</subject><subject>Hypothalamus - physiology</subject><subject>Melanocortins - physiology</subject><subject>Metabolism</subject><subject>Models, Neurological</subject><subject>Neural Pathways - physiology</subject><subject>Neurobiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neuropeptide Y - physiology</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Obesity</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Pro-Opiomelanocortin - physiology</subject><subject>review-article</subject><subject>Synaptic Transmission - physiology</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkl1LHTEQhoMo1driPygLXrRe7Gm-Py6ttCoIQm2vQzY7Z4nsyZ4mWej5981BW3tEkFzMkDzzMu9kEDoheEEw059jXDBKzB46IoLLligq92uOjWolFfIQvc35HmOshDZv0CFlNSVaH6Evd5vo1iX4Zj26XGMomybEJsKcpujGxofk51Byk2CYR1dCHBqIkIZN07nRRQ_v0MHSjRneP8Zj9PPb1x8XV-3N7eX1xflN6wWnpVW0ox4zRjvtMSiHsfC9EcZQJ5hwkhJPpQbZK2F4z4FRrbTrvALDdOcNO0afHnTXafo1Qy52FbKHsTYB05wt4YxjKpTWr6NYY0kYIbSip8_Q-2lO1fmWkobXgRHyRA1uBBvicirJ-a2oPWeYG04VYZVavEDV08Mq-CnCMtT7nYKznYLKFPhdBjfnbK_vvu-yHx9Yn6acEyztOoWVS5vap90ugY3Rbpegkh8eLc3dCvp_3N9ffxpPrk9xgPS_512tP4NgtRc</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Zeltser, Lori M</creator><creator>Seeley, Randy J</creator><creator>Tschöp, Matthias H</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20121001</creationdate><title>Synaptic plasticity in neuronal circuits regulating energy balance</title><author>Zeltser, Lori M ; Seeley, Randy J ; Tschöp, Matthias H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-72b2c0332b8c0e7a005cd95992a535a621c268e6d7594d4e32878abc7e938bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/378/1488</topic><topic>631/378/2591</topic><topic>Agouti-Related Protein - physiology</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Central nervous system</topic><topic>Diabetes</topic><topic>Energy</topic><topic>Energy Metabolism - physiology</topic><topic>Hypothalamus</topic><topic>Hypothalamus - physiology</topic><topic>Melanocortins - physiology</topic><topic>Metabolism</topic><topic>Models, Neurological</topic><topic>Neural Pathways - physiology</topic><topic>Neurobiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neuropeptide Y - physiology</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Obesity</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Pro-Opiomelanocortin - physiology</topic><topic>review-article</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeltser, Lori M</creatorcontrib><creatorcontrib>Seeley, Randy J</creatorcontrib><creatorcontrib>Tschöp, Matthias H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeltser, Lori M</au><au>Seeley, Randy J</au><au>Tschöp, Matthias H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic plasticity in neuronal circuits regulating energy balance</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>15</volume><issue>10</issue><spage>1336</spage><epage>1342</epage><pages>1336-1342</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Energy balance is maintained by neuronal populations throughout the central nervous system, but is primarily localized in the mediobasal hypothalamus. In this review, the authors discuss recent work examining plastic changes in hypothalamic circuits in response changes in nutrient availability and long-term energy status. Maintaining energy balance is of paramount importance for metabolic health and survival. It is achieved through the coordinated regulation of neuronal circuits that control a wide range of physiological processes affecting energy intake and expenditure, such as feeding, metabolic rate, locomotor activity, arousal, growth and reproduction. Neuronal populations distributed throughout the CNS but highly enriched in the mediobasal hypothalamus, sense hormonal, nutrient and neuronal signals of systemic energy status and relay this information to secondary neurons that integrate the information and regulate distinct physiological parameters in a manner that promotes energy homeostasis. To achieve this, it is critical that neuronal circuits provide information about short-term changes in nutrient availability in the larger context of long-term energy status. For example, the same signals lead to different cellular and physiological responses if delivered under fasted versus fed conditions. Thus, there is a clear need to have mechanisms that rapidly and reversibly adjust responsiveness of hypothalamic circuits to acute changes in nutrient availability.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>23007188</pmid><doi>10.1038/nn.3219</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2012-10, Vol.15 (10), p.1336-1342
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_1434025788
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/378/1488
631/378/2591
Agouti-Related Protein - physiology
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain - physiology
Central nervous system
Diabetes
Energy
Energy Metabolism - physiology
Hypothalamus
Hypothalamus - physiology
Melanocortins - physiology
Metabolism
Models, Neurological
Neural Pathways - physiology
Neurobiology
Neuronal Plasticity - physiology
Neurons
Neuropeptide Y - physiology
Neuroplasticity
Neurosciences
Obesity
Peptides
Physiological aspects
Physiology
Pro-Opiomelanocortin - physiology
review-article
Synaptic Transmission - physiology
title Synaptic plasticity in neuronal circuits regulating energy balance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20plasticity%20in%20neuronal%20circuits%20regulating%20energy%20balance&rft.jtitle=Nature%20neuroscience&rft.au=Zeltser,%20Lori%20M&rft.date=2012-10-01&rft.volume=15&rft.issue=10&rft.spage=1336&rft.epage=1342&rft.pages=1336-1342&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3219&rft_dat=%3Cgale_proqu%3EA304942713%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069458911&rft_id=info:pmid/23007188&rft_galeid=A304942713&rfr_iscdi=true