Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system

Biological rhythms, describing the temporal variation of biological processes, are a characteristic feature of complex systems. The analysis of biological rhythms can provide important insights into the pathophysiology of different diseases, especially, in cardiovascular medicine. In the field of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Neural Transmission 2013-09, Vol.120 (Suppl 1), p.27-33
Hauptverfasser: Ziemssen, Tjalf, Reimann, Manja, Gasch, Julia, Rüdiger, Heinz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue Suppl 1
container_start_page 27
container_title Journal of Neural Transmission
container_volume 120
creator Ziemssen, Tjalf
Reimann, Manja
Gasch, Julia
Rüdiger, Heinz
description Biological rhythms, describing the temporal variation of biological processes, are a characteristic feature of complex systems. The analysis of biological rhythms can provide important insights into the pathophysiology of different diseases, especially, in cardiovascular medicine. In the field of the autonomic nervous system, heart rate variability (HRV) and baroreflex sensitivity (BRS) describe important fluctuations of blood pressure and heart rate which are often analyzed by Fourier transformation. However, these parameters are stochastic with overlaying rhythmical structures. R–R intervals as independent variables of time are not equidistant. That is why the trigonometric regressive spectral (TRS) analysis—reviewed in this paper—was introduced, considering both the statistical and rhythmical features of such time series. The data segments required for TRS analysis can be as short as 20 s allowing for dynamic evaluation of heart rate and blood pressure interaction over longer periods. Beyond HRV, TRS also estimates BRS based on linear regression analyses of coherent heart rate and blood pressure oscillations. An additional advantage is that all oscillations are analyzed by the same (maximal) number of R–R intervals thereby providing a high number of individual BRS values. This ensures a high confidence level of BRS determination which, along with short recording periods, may be of profound clinical relevance. The dynamic assessment of heart rate and blood pressure spectra by TRS allows a more precise evaluation of cardiovascular modulation under different settings as has already been demonstrated in different clinical studies.
doi_str_mv 10.1007/s00702-013-1054-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434023781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1434023781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-ca0b5d7f370ced1243f2c375e2ea9a41ee59fa86f680c9f942601b9329e8e24c3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7ri7P8CLBLx4aa18dTreZPELFrzsnkMmUz320N0ZU-mB-fdmdlYRQfCShOSpt0I9jL0U8FYA2HdUF5ANCNUIMLoxT9hKaGUaoVv1lK1AATTOtPqCvSDaAYAQtnvOLqTqhDQgV2x3l4dtmtOEJQ-RZ9xmJBoOyGmPseQw8jCH8UgDva8nPsxzOoRyAkpKI-9T5ngI41Lv5i0v35GHpZwCa9qM-ZAW4nSkgtMVe9aHkfD6cb9k958-3t18aW6_ff568-G2iRpMaWKAtdnYXlmIuBFSq15GZQ1KDC5ogWhcH7q2bzuIrndatiDWTkmHHUod1SV7c87d5_RjQSp-GijiOIYZ6298nZAGqWwn_gOV1mqnW1fR13-hu7TkOpoHSkmjnFWVEmcq5kSUsff7PEwhH70Af3Lmz858deZPzrypNa8ek5f1hJvfFb8kVUCeAapP8xbzH63_mfoT-T-igw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1423253973</pqid></control><display><type>article</type><title>Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ziemssen, Tjalf ; Reimann, Manja ; Gasch, Julia ; Rüdiger, Heinz</creator><creatorcontrib>Ziemssen, Tjalf ; Reimann, Manja ; Gasch, Julia ; Rüdiger, Heinz</creatorcontrib><description>Biological rhythms, describing the temporal variation of biological processes, are a characteristic feature of complex systems. The analysis of biological rhythms can provide important insights into the pathophysiology of different diseases, especially, in cardiovascular medicine. In the field of the autonomic nervous system, heart rate variability (HRV) and baroreflex sensitivity (BRS) describe important fluctuations of blood pressure and heart rate which are often analyzed by Fourier transformation. However, these parameters are stochastic with overlaying rhythmical structures. R–R intervals as independent variables of time are not equidistant. That is why the trigonometric regressive spectral (TRS) analysis—reviewed in this paper—was introduced, considering both the statistical and rhythmical features of such time series. The data segments required for TRS analysis can be as short as 20 s allowing for dynamic evaluation of heart rate and blood pressure interaction over longer periods. Beyond HRV, TRS also estimates BRS based on linear regression analyses of coherent heart rate and blood pressure oscillations. An additional advantage is that all oscillations are analyzed by the same (maximal) number of R–R intervals thereby providing a high number of individual BRS values. This ensures a high confidence level of BRS determination which, along with short recording periods, may be of profound clinical relevance. The dynamic assessment of heart rate and blood pressure spectra by TRS allows a more precise evaluation of cardiovascular modulation under different settings as has already been demonstrated in different clinical studies.</description><identifier>ISSN: 0300-9564</identifier><identifier>EISSN: 1435-1463</identifier><identifier>DOI: 10.1007/s00702-013-1054-5</identifier><identifier>PMID: 23812502</identifier><identifier>CODEN: JNTRF3</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Animals ; Autonomic Nervous System - physiology ; Baroreflex - physiology ; Blood Pressure - physiology ; Fourier Analysis ; Heart Rate - physiology ; Humans ; Medicine ; Medicine &amp; Public Health ; Neurology ; Neurology and Preclinical Neurological Studies - Review Article ; Neurosciences ; Psychiatry ; Regression Analysis</subject><ispartof>Journal of Neural Transmission, 2013-09, Vol.120 (Suppl 1), p.27-33</ispartof><rights>Springer-Verlag Wien 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-ca0b5d7f370ced1243f2c375e2ea9a41ee59fa86f680c9f942601b9329e8e24c3</citedby><cites>FETCH-LOGICAL-c405t-ca0b5d7f370ced1243f2c375e2ea9a41ee59fa86f680c9f942601b9329e8e24c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00702-013-1054-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00702-013-1054-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23812502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziemssen, Tjalf</creatorcontrib><creatorcontrib>Reimann, Manja</creatorcontrib><creatorcontrib>Gasch, Julia</creatorcontrib><creatorcontrib>Rüdiger, Heinz</creatorcontrib><title>Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system</title><title>Journal of Neural Transmission</title><addtitle>J Neural Transm</addtitle><addtitle>J Neural Transm (Vienna)</addtitle><description>Biological rhythms, describing the temporal variation of biological processes, are a characteristic feature of complex systems. The analysis of biological rhythms can provide important insights into the pathophysiology of different diseases, especially, in cardiovascular medicine. In the field of the autonomic nervous system, heart rate variability (HRV) and baroreflex sensitivity (BRS) describe important fluctuations of blood pressure and heart rate which are often analyzed by Fourier transformation. However, these parameters are stochastic with overlaying rhythmical structures. R–R intervals as independent variables of time are not equidistant. That is why the trigonometric regressive spectral (TRS) analysis—reviewed in this paper—was introduced, considering both the statistical and rhythmical features of such time series. The data segments required for TRS analysis can be as short as 20 s allowing for dynamic evaluation of heart rate and blood pressure interaction over longer periods. Beyond HRV, TRS also estimates BRS based on linear regression analyses of coherent heart rate and blood pressure oscillations. An additional advantage is that all oscillations are analyzed by the same (maximal) number of R–R intervals thereby providing a high number of individual BRS values. This ensures a high confidence level of BRS determination which, along with short recording periods, may be of profound clinical relevance. The dynamic assessment of heart rate and blood pressure spectra by TRS allows a more precise evaluation of cardiovascular modulation under different settings as has already been demonstrated in different clinical studies.</description><subject>Animals</subject><subject>Autonomic Nervous System - physiology</subject><subject>Baroreflex - physiology</subject><subject>Blood Pressure - physiology</subject><subject>Fourier Analysis</subject><subject>Heart Rate - physiology</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neurology</subject><subject>Neurology and Preclinical Neurological Studies - Review Article</subject><subject>Neurosciences</subject><subject>Psychiatry</subject><subject>Regression Analysis</subject><issn>0300-9564</issn><issn>1435-1463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7ri7P8CLBLx4aa18dTreZPELFrzsnkMmUz320N0ZU-mB-fdmdlYRQfCShOSpt0I9jL0U8FYA2HdUF5ANCNUIMLoxT9hKaGUaoVv1lK1AATTOtPqCvSDaAYAQtnvOLqTqhDQgV2x3l4dtmtOEJQ-RZ9xmJBoOyGmPseQw8jCH8UgDva8nPsxzOoRyAkpKI-9T5ngI41Lv5i0v35GHpZwCa9qM-ZAW4nSkgtMVe9aHkfD6cb9k958-3t18aW6_ff568-G2iRpMaWKAtdnYXlmIuBFSq15GZQ1KDC5ogWhcH7q2bzuIrndatiDWTkmHHUod1SV7c87d5_RjQSp-GijiOIYZ6298nZAGqWwn_gOV1mqnW1fR13-hu7TkOpoHSkmjnFWVEmcq5kSUsff7PEwhH70Af3Lmz858deZPzrypNa8ek5f1hJvfFb8kVUCeAapP8xbzH63_mfoT-T-igw</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Ziemssen, Tjalf</creator><creator>Reimann, Manja</creator><creator>Gasch, Julia</creator><creator>Rüdiger, Heinz</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20130901</creationdate><title>Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system</title><author>Ziemssen, Tjalf ; Reimann, Manja ; Gasch, Julia ; Rüdiger, Heinz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-ca0b5d7f370ced1243f2c375e2ea9a41ee59fa86f680c9f942601b9329e8e24c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Autonomic Nervous System - physiology</topic><topic>Baroreflex - physiology</topic><topic>Blood Pressure - physiology</topic><topic>Fourier Analysis</topic><topic>Heart Rate - physiology</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neurology</topic><topic>Neurology and Preclinical Neurological Studies - Review Article</topic><topic>Neurosciences</topic><topic>Psychiatry</topic><topic>Regression Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziemssen, Tjalf</creatorcontrib><creatorcontrib>Reimann, Manja</creatorcontrib><creatorcontrib>Gasch, Julia</creatorcontrib><creatorcontrib>Rüdiger, Heinz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of Neural Transmission</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziemssen, Tjalf</au><au>Reimann, Manja</au><au>Gasch, Julia</au><au>Rüdiger, Heinz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system</atitle><jtitle>Journal of Neural Transmission</jtitle><stitle>J Neural Transm</stitle><addtitle>J Neural Transm (Vienna)</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>120</volume><issue>Suppl 1</issue><spage>27</spage><epage>33</epage><pages>27-33</pages><issn>0300-9564</issn><eissn>1435-1463</eissn><coden>JNTRF3</coden><abstract>Biological rhythms, describing the temporal variation of biological processes, are a characteristic feature of complex systems. The analysis of biological rhythms can provide important insights into the pathophysiology of different diseases, especially, in cardiovascular medicine. In the field of the autonomic nervous system, heart rate variability (HRV) and baroreflex sensitivity (BRS) describe important fluctuations of blood pressure and heart rate which are often analyzed by Fourier transformation. However, these parameters are stochastic with overlaying rhythmical structures. R–R intervals as independent variables of time are not equidistant. That is why the trigonometric regressive spectral (TRS) analysis—reviewed in this paper—was introduced, considering both the statistical and rhythmical features of such time series. The data segments required for TRS analysis can be as short as 20 s allowing for dynamic evaluation of heart rate and blood pressure interaction over longer periods. Beyond HRV, TRS also estimates BRS based on linear regression analyses of coherent heart rate and blood pressure oscillations. An additional advantage is that all oscillations are analyzed by the same (maximal) number of R–R intervals thereby providing a high number of individual BRS values. This ensures a high confidence level of BRS determination which, along with short recording periods, may be of profound clinical relevance. The dynamic assessment of heart rate and blood pressure spectra by TRS allows a more precise evaluation of cardiovascular modulation under different settings as has already been demonstrated in different clinical studies.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>23812502</pmid><doi>10.1007/s00702-013-1054-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0300-9564
ispartof Journal of Neural Transmission, 2013-09, Vol.120 (Suppl 1), p.27-33
issn 0300-9564
1435-1463
language eng
recordid cdi_proquest_miscellaneous_1434023781
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Autonomic Nervous System - physiology
Baroreflex - physiology
Blood Pressure - physiology
Fourier Analysis
Heart Rate - physiology
Humans
Medicine
Medicine & Public Health
Neurology
Neurology and Preclinical Neurological Studies - Review Article
Neurosciences
Psychiatry
Regression Analysis
title Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trigonometric%20regressive%20spectral%20analysis:%20an%20innovative%20tool%20for%20evaluating%20the%20autonomic%20nervous%20system&rft.jtitle=Journal%20of%20Neural%20Transmission&rft.au=Ziemssen,%20Tjalf&rft.date=2013-09-01&rft.volume=120&rft.issue=Suppl%201&rft.spage=27&rft.epage=33&rft.pages=27-33&rft.issn=0300-9564&rft.eissn=1435-1463&rft.coden=JNTRF3&rft_id=info:doi/10.1007/s00702-013-1054-5&rft_dat=%3Cproquest_cross%3E1434023781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1423253973&rft_id=info:pmid/23812502&rfr_iscdi=true