Global proteome changes in larvae of Callosobruchus maculatus Coleoptera:Chrysomelidae:Bruchinae) following ingestion of a cysteine proteinase inhibitor
The seed‐feeding beetle Callosobruchus maculatus is an important cowpea pest (Vigna unguiculata) as well as an interesting model to study insect digestive physiology. The larvae of C. maculatus rely on cysteine and aspartic peptidases to digest proteins in their diet. In this work, the global proteo...
Gespeichert in:
Veröffentlicht in: | Proteomics (Weinheim) 2012-08, Vol.12 (17), p.2704-2715 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2715 |
---|---|
container_issue | 17 |
container_start_page | 2704 |
container_title | Proteomics (Weinheim) |
container_volume | 12 |
creator | Nogueira, Fábio C. S. Silva, Carlos P. Alexandre, Daniel Samuels, Richard I. Soares, Emanoella L. Aragão, Francisco J. L. Palmisano, Giuseppe Domont, Gilberto B. Roepstorff, Peter Campos, Francisco A. P. |
description | The seed‐feeding beetle Callosobruchus maculatus is an important cowpea pest (Vigna unguiculata) as well as an interesting model to study insect digestive physiology. The larvae of C. maculatus rely on cysteine and aspartic peptidases to digest proteins in their diet. In this work, the global proteomic changes induced in the intestinal tract of larval C. maculatus challenged by the ingestion of cystatin, a cysteine peptidase inhibitor, was investigated by a nanoLC‐MS/MS approach. The ingestion of cystatin caused a delay in the development of the larvae, but the mortality was not high, indicating that C. maculatus is able to adapt to this inhibitor. This proteomic strategy resulted in the identification of 752 and 550 protein groups in the midgut epithelia and midgut contents, respectively, and quantitative analyses allowed us to establish relative differences of the identified proteins. Ingestion of cystatin led to significant changes in the proteome of both the midgut epithelia and midgut contents. We have observed that proteins related to plant cell wall degradation, particularly the key glycoside hydrolases of the families GH5 (endo‐β‐1,4‐mannanase) and GH 28 (polygalacturonase) were overexpressed. Conversely, α‐amylases were downexpressed, indicating that an increase in hemicelluloses digestion helps the larvae to cope with the challenge of cystatin ingestion. Furthermore, a number of proteins associated with transcription/translation and antistress reactions were among the cystatin‐responsive proteins, implying that a substantial rearrangement in the proteome occurred in C. maculatus exposed to the inhibitor. |
doi_str_mv | 10.1002/pmic.201200039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434022028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2976726041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4399-7a57db05153b0259c12df23c43d38bbd59bc56a227d1ecd4897e0bdadbefea973</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0Eou3ClSOKxAUOWfyRxElvNIKlUgs9gCpxsfwx6bo48WIntPtP-Lk4StkDl55syc88npkXoVcErwnG9P2ut3pNMaEYY9Y8QcekImXe1BV5eriX7AidxHiLMeF1w5-jI0prxkrGj9GfjfNKumwX_Ai-h0xv5XADMbND5mT4LSHzXdZK53z0Kkx6O8Wsl3pycky31jvwuxGCPG23YR-TwVkj4fRsRu0g4V3W-VR8Z4eb5Ezm0fphdspM7-MIdoDl8wRHSMjWKjv68AI966SL8PLhXKHvnz5-az_nF1835-2Hi1wXrGlyLktuFC5JyRSmZaMJNR1l6dGwWilTNkqXlaSUGwLaFGl-wMpIo6AD2XC2Qm8Xb2ri15TaE72NGpyTA_gpClKwAlOK08YeRTGral4xQhL65j_01k9hSIMIkhZfkYon8QqtF0oHH2OATuyC7WXYJ5WY4xVzvOIQbyp4_aCdVA_mgP_LMwHFAtxZB_tHdOLq8rzlpJq9-VJmUyL3hzIZfoqKM16K6y8bcb3BZ_WPyyuB2V_HE8Mt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353616714</pqid></control><display><type>article</type><title>Global proteome changes in larvae of Callosobruchus maculatus Coleoptera:Chrysomelidae:Bruchinae) following ingestion of a cysteine proteinase inhibitor</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nogueira, Fábio C. S. ; Silva, Carlos P. ; Alexandre, Daniel ; Samuels, Richard I. ; Soares, Emanoella L. ; Aragão, Francisco J. L. ; Palmisano, Giuseppe ; Domont, Gilberto B. ; Roepstorff, Peter ; Campos, Francisco A. P.</creator><creatorcontrib>Nogueira, Fábio C. S. ; Silva, Carlos P. ; Alexandre, Daniel ; Samuels, Richard I. ; Soares, Emanoella L. ; Aragão, Francisco J. L. ; Palmisano, Giuseppe ; Domont, Gilberto B. ; Roepstorff, Peter ; Campos, Francisco A. P.</creatorcontrib><description>The seed‐feeding beetle Callosobruchus maculatus is an important cowpea pest (Vigna unguiculata) as well as an interesting model to study insect digestive physiology. The larvae of C. maculatus rely on cysteine and aspartic peptidases to digest proteins in their diet. In this work, the global proteomic changes induced in the intestinal tract of larval C. maculatus challenged by the ingestion of cystatin, a cysteine peptidase inhibitor, was investigated by a nanoLC‐MS/MS approach. The ingestion of cystatin caused a delay in the development of the larvae, but the mortality was not high, indicating that C. maculatus is able to adapt to this inhibitor. This proteomic strategy resulted in the identification of 752 and 550 protein groups in the midgut epithelia and midgut contents, respectively, and quantitative analyses allowed us to establish relative differences of the identified proteins. Ingestion of cystatin led to significant changes in the proteome of both the midgut epithelia and midgut contents. We have observed that proteins related to plant cell wall degradation, particularly the key glycoside hydrolases of the families GH5 (endo‐β‐1,4‐mannanase) and GH 28 (polygalacturonase) were overexpressed. Conversely, α‐amylases were downexpressed, indicating that an increase in hemicelluloses digestion helps the larvae to cope with the challenge of cystatin ingestion. Furthermore, a number of proteins associated with transcription/translation and antistress reactions were among the cystatin‐responsive proteins, implying that a substantial rearrangement in the proteome occurred in C. maculatus exposed to the inhibitor.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.201200039</identifier><identifier>PMID: 22833537</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Animals ; Callosobruchus maculatus ; Coleoptera - growth & development ; Coleoptera - metabolism ; Coleoptera - physiology ; Cystatins - metabolism ; Cysteine Proteinase Inhibitors - metabolism ; Digestive System - metabolism ; Eating ; Egg white cystatin ; Fabaceae - parasitology ; Insect digestive enzymes ; Insect Proteins - metabolism ; Larva - growth & development ; Larva - metabolism ; Larva - physiology ; Peptidase inhibitors ; Pest Control ; Plant proteomics ; Proteins ; Proteome - metabolism ; Seeds - parasitology ; Vigna unguiculata</subject><ispartof>Proteomics (Weinheim), 2012-08, Vol.12 (17), p.2704-2715</ispartof><rights>2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4399-7a57db05153b0259c12df23c43d38bbd59bc56a227d1ecd4897e0bdadbefea973</citedby><cites>FETCH-LOGICAL-c4399-7a57db05153b0259c12df23c43d38bbd59bc56a227d1ecd4897e0bdadbefea973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.201200039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.201200039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22833537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nogueira, Fábio C. S.</creatorcontrib><creatorcontrib>Silva, Carlos P.</creatorcontrib><creatorcontrib>Alexandre, Daniel</creatorcontrib><creatorcontrib>Samuels, Richard I.</creatorcontrib><creatorcontrib>Soares, Emanoella L.</creatorcontrib><creatorcontrib>Aragão, Francisco J. L.</creatorcontrib><creatorcontrib>Palmisano, Giuseppe</creatorcontrib><creatorcontrib>Domont, Gilberto B.</creatorcontrib><creatorcontrib>Roepstorff, Peter</creatorcontrib><creatorcontrib>Campos, Francisco A. P.</creatorcontrib><title>Global proteome changes in larvae of Callosobruchus maculatus Coleoptera:Chrysomelidae:Bruchinae) following ingestion of a cysteine proteinase inhibitor</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>The seed‐feeding beetle Callosobruchus maculatus is an important cowpea pest (Vigna unguiculata) as well as an interesting model to study insect digestive physiology. The larvae of C. maculatus rely on cysteine and aspartic peptidases to digest proteins in their diet. In this work, the global proteomic changes induced in the intestinal tract of larval C. maculatus challenged by the ingestion of cystatin, a cysteine peptidase inhibitor, was investigated by a nanoLC‐MS/MS approach. The ingestion of cystatin caused a delay in the development of the larvae, but the mortality was not high, indicating that C. maculatus is able to adapt to this inhibitor. This proteomic strategy resulted in the identification of 752 and 550 protein groups in the midgut epithelia and midgut contents, respectively, and quantitative analyses allowed us to establish relative differences of the identified proteins. Ingestion of cystatin led to significant changes in the proteome of both the midgut epithelia and midgut contents. We have observed that proteins related to plant cell wall degradation, particularly the key glycoside hydrolases of the families GH5 (endo‐β‐1,4‐mannanase) and GH 28 (polygalacturonase) were overexpressed. Conversely, α‐amylases were downexpressed, indicating that an increase in hemicelluloses digestion helps the larvae to cope with the challenge of cystatin ingestion. Furthermore, a number of proteins associated with transcription/translation and antistress reactions were among the cystatin‐responsive proteins, implying that a substantial rearrangement in the proteome occurred in C. maculatus exposed to the inhibitor.</description><subject>Animals</subject><subject>Callosobruchus maculatus</subject><subject>Coleoptera - growth & development</subject><subject>Coleoptera - metabolism</subject><subject>Coleoptera - physiology</subject><subject>Cystatins - metabolism</subject><subject>Cysteine Proteinase Inhibitors - metabolism</subject><subject>Digestive System - metabolism</subject><subject>Eating</subject><subject>Egg white cystatin</subject><subject>Fabaceae - parasitology</subject><subject>Insect digestive enzymes</subject><subject>Insect Proteins - metabolism</subject><subject>Larva - growth & development</subject><subject>Larva - metabolism</subject><subject>Larva - physiology</subject><subject>Peptidase inhibitors</subject><subject>Pest Control</subject><subject>Plant proteomics</subject><subject>Proteins</subject><subject>Proteome - metabolism</subject><subject>Seeds - parasitology</subject><subject>Vigna unguiculata</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0Eou3ClSOKxAUOWfyRxElvNIKlUgs9gCpxsfwx6bo48WIntPtP-Lk4StkDl55syc88npkXoVcErwnG9P2ut3pNMaEYY9Y8QcekImXe1BV5eriX7AidxHiLMeF1w5-jI0prxkrGj9GfjfNKumwX_Ai-h0xv5XADMbND5mT4LSHzXdZK53z0Kkx6O8Wsl3pycky31jvwuxGCPG23YR-TwVkj4fRsRu0g4V3W-VR8Z4eb5Ezm0fphdspM7-MIdoDl8wRHSMjWKjv68AI966SL8PLhXKHvnz5-az_nF1835-2Hi1wXrGlyLktuFC5JyRSmZaMJNR1l6dGwWilTNkqXlaSUGwLaFGl-wMpIo6AD2XC2Qm8Xb2ri15TaE72NGpyTA_gpClKwAlOK08YeRTGral4xQhL65j_01k9hSIMIkhZfkYon8QqtF0oHH2OATuyC7WXYJ5WY4xVzvOIQbyp4_aCdVA_mgP_LMwHFAtxZB_tHdOLq8rzlpJq9-VJmUyL3hzIZfoqKM16K6y8bcb3BZ_WPyyuB2V_HE8Mt</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Nogueira, Fábio C. S.</creator><creator>Silva, Carlos P.</creator><creator>Alexandre, Daniel</creator><creator>Samuels, Richard I.</creator><creator>Soares, Emanoella L.</creator><creator>Aragão, Francisco J. L.</creator><creator>Palmisano, Giuseppe</creator><creator>Domont, Gilberto B.</creator><creator>Roepstorff, Peter</creator><creator>Campos, Francisco A. P.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201208</creationdate><title>Global proteome changes in larvae of Callosobruchus maculatus Coleoptera:Chrysomelidae:Bruchinae) following ingestion of a cysteine proteinase inhibitor</title><author>Nogueira, Fábio C. S. ; Silva, Carlos P. ; Alexandre, Daniel ; Samuels, Richard I. ; Soares, Emanoella L. ; Aragão, Francisco J. L. ; Palmisano, Giuseppe ; Domont, Gilberto B. ; Roepstorff, Peter ; Campos, Francisco A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4399-7a57db05153b0259c12df23c43d38bbd59bc56a227d1ecd4897e0bdadbefea973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Callosobruchus maculatus</topic><topic>Coleoptera - growth & development</topic><topic>Coleoptera - metabolism</topic><topic>Coleoptera - physiology</topic><topic>Cystatins - metabolism</topic><topic>Cysteine Proteinase Inhibitors - metabolism</topic><topic>Digestive System - metabolism</topic><topic>Eating</topic><topic>Egg white cystatin</topic><topic>Fabaceae - parasitology</topic><topic>Insect digestive enzymes</topic><topic>Insect Proteins - metabolism</topic><topic>Larva - growth & development</topic><topic>Larva - metabolism</topic><topic>Larva - physiology</topic><topic>Peptidase inhibitors</topic><topic>Pest Control</topic><topic>Plant proteomics</topic><topic>Proteins</topic><topic>Proteome - metabolism</topic><topic>Seeds - parasitology</topic><topic>Vigna unguiculata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nogueira, Fábio C. S.</creatorcontrib><creatorcontrib>Silva, Carlos P.</creatorcontrib><creatorcontrib>Alexandre, Daniel</creatorcontrib><creatorcontrib>Samuels, Richard I.</creatorcontrib><creatorcontrib>Soares, Emanoella L.</creatorcontrib><creatorcontrib>Aragão, Francisco J. L.</creatorcontrib><creatorcontrib>Palmisano, Giuseppe</creatorcontrib><creatorcontrib>Domont, Gilberto B.</creatorcontrib><creatorcontrib>Roepstorff, Peter</creatorcontrib><creatorcontrib>Campos, Francisco A. P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nogueira, Fábio C. S.</au><au>Silva, Carlos P.</au><au>Alexandre, Daniel</au><au>Samuels, Richard I.</au><au>Soares, Emanoella L.</au><au>Aragão, Francisco J. L.</au><au>Palmisano, Giuseppe</au><au>Domont, Gilberto B.</au><au>Roepstorff, Peter</au><au>Campos, Francisco A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global proteome changes in larvae of Callosobruchus maculatus Coleoptera:Chrysomelidae:Bruchinae) following ingestion of a cysteine proteinase inhibitor</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2012-08</date><risdate>2012</risdate><volume>12</volume><issue>17</issue><spage>2704</spage><epage>2715</epage><pages>2704-2715</pages><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>The seed‐feeding beetle Callosobruchus maculatus is an important cowpea pest (Vigna unguiculata) as well as an interesting model to study insect digestive physiology. The larvae of C. maculatus rely on cysteine and aspartic peptidases to digest proteins in their diet. In this work, the global proteomic changes induced in the intestinal tract of larval C. maculatus challenged by the ingestion of cystatin, a cysteine peptidase inhibitor, was investigated by a nanoLC‐MS/MS approach. The ingestion of cystatin caused a delay in the development of the larvae, but the mortality was not high, indicating that C. maculatus is able to adapt to this inhibitor. This proteomic strategy resulted in the identification of 752 and 550 protein groups in the midgut epithelia and midgut contents, respectively, and quantitative analyses allowed us to establish relative differences of the identified proteins. Ingestion of cystatin led to significant changes in the proteome of both the midgut epithelia and midgut contents. We have observed that proteins related to plant cell wall degradation, particularly the key glycoside hydrolases of the families GH5 (endo‐β‐1,4‐mannanase) and GH 28 (polygalacturonase) were overexpressed. Conversely, α‐amylases were downexpressed, indicating that an increase in hemicelluloses digestion helps the larvae to cope with the challenge of cystatin ingestion. Furthermore, a number of proteins associated with transcription/translation and antistress reactions were among the cystatin‐responsive proteins, implying that a substantial rearrangement in the proteome occurred in C. maculatus exposed to the inhibitor.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>22833537</pmid><doi>10.1002/pmic.201200039</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-9853 |
ispartof | Proteomics (Weinheim), 2012-08, Vol.12 (17), p.2704-2715 |
issn | 1615-9853 1615-9861 |
language | eng |
recordid | cdi_proquest_miscellaneous_1434022028 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Callosobruchus maculatus Coleoptera - growth & development Coleoptera - metabolism Coleoptera - physiology Cystatins - metabolism Cysteine Proteinase Inhibitors - metabolism Digestive System - metabolism Eating Egg white cystatin Fabaceae - parasitology Insect digestive enzymes Insect Proteins - metabolism Larva - growth & development Larva - metabolism Larva - physiology Peptidase inhibitors Pest Control Plant proteomics Proteins Proteome - metabolism Seeds - parasitology Vigna unguiculata |
title | Global proteome changes in larvae of Callosobruchus maculatus Coleoptera:Chrysomelidae:Bruchinae) following ingestion of a cysteine proteinase inhibitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20proteome%20changes%20in%20larvae%20of%20Callosobruchus%20maculatus%20Coleoptera:Chrysomelidae:Bruchinae)%20following%20ingestion%20of%20a%20cysteine%20proteinase%20inhibitor&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Nogueira,%20F%C3%A1bio%20C.%20S.&rft.date=2012-08&rft.volume=12&rft.issue=17&rft.spage=2704&rft.epage=2715&rft.pages=2704-2715&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.201200039&rft_dat=%3Cproquest_cross%3E2976726041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353616714&rft_id=info:pmid/22833537&rfr_iscdi=true |