The Continuum of Hydroclimate Variability in Western North America during the Last Millennium

The distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here power spectra and power laws (β) are estimated from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2013-08, Vol.26 (16), p.5863-5878
Hauptverfasser: Ault, Toby R., Cole, Julia E., Overpeck, Jonathan T., Pederson, Gregory T., St. George, Scott, Otto-Bliesner, Bette, Woodhouse, Connie A., Deser, Clara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5878
container_issue 16
container_start_page 5863
container_title Journal of climate
container_volume 26
creator Ault, Toby R.
Cole, Julia E.
Overpeck, Jonathan T.
Pederson, Gregory T.
St. George, Scott
Otto-Bliesner, Bette
Woodhouse, Connie A.
Deser, Clara
description The distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here power spectra and power laws (β) are estimated from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in western North America (WNA). The significance of the estimates of spectral densities andβare tested against the null hypothesis that they reflect solely the effects of local (nonclimate) sources of autocorrelation at the monthly time scale. Although tree-ring-based hydroclimate reconstructions are generally consistent with this null hypothesis, values ofβcalculated from long moisture-sensitive chronologies (as opposed to reconstructions) and other types of hydroclimate proxies exceed null expectations. Therefore it may be argued that there is more low-frequency variability in hydroclimate than monthly autocorrelation alone can generate. Coupled model results archived as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are consistent with the null hypothesis and appear unable to generate variance in hydroclimate commensurate with paleoclimate records. Consequently, at decadal-to-multidecadal time scales there is more variability in instrumental and proxy data than in the models, suggesting that the risk of prolonged droughts under climate change may be underestimated by CMIP5 simulations of the future.
doi_str_mv 10.1175/jcli-d-11-00732.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434020753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26192731</jstor_id><sourcerecordid>26192731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-4c19be7b2970aba0ecf475109186114fa503fe7eda0b139f2c9d7a59abce39fe3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EEkvhB3BAsoSQuKTM-CNOjtUCbdEClwInZDmOQ71K7NZ2Dvvv67IVSBw4jUd-5tGrGUJeIpwiKvlub2ffjA1iA6A4O8VHZIOSQQNCsMdkA10vmk5J-ZQ8y3kPgKwF2JCfV9eObmMoPqzrQuNELw5jitW2mOLod5O8Gfzsy4H6QH-4XFwK9EtM5ZqeLS55a-i4Jh9-0VJNO5ML_ezn2YXg1-U5eTKZObsXD_WEfPv44Wp70ey-nl9uz3aNFawvjbDYD04NrFdgBgPOTkJJhB67FlFMRgKfnHKjgQF5PzHbj8rI3gzW1dbxE_L26L1J8XatIfXis3XzbIKLa9YouAAGSvKKvv4H3cc1hZpOs67KleCy_R-FQsB9rrarFB4pm2LOyU36JtW9pYNG0Pdn0Z-2u0v9vr7177NorDNvHswmWzNPyQTr859BplrBuWSVe3Xk9rnE9Pe_xZ4pjvwOeM2WnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440186168</pqid></control><display><type>article</type><title>The Continuum of Hydroclimate Variability in Western North America during the Last Millennium</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ault, Toby R. ; Cole, Julia E. ; Overpeck, Jonathan T. ; Pederson, Gregory T. ; St. George, Scott ; Otto-Bliesner, Bette ; Woodhouse, Connie A. ; Deser, Clara</creator><creatorcontrib>Ault, Toby R. ; Cole, Julia E. ; Overpeck, Jonathan T. ; Pederson, Gregory T. ; St. George, Scott ; Otto-Bliesner, Bette ; Woodhouse, Connie A. ; Deser, Clara</creatorcontrib><description>The distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here power spectra and power laws (β) are estimated from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in western North America (WNA). The significance of the estimates of spectral densities andβare tested against the null hypothesis that they reflect solely the effects of local (nonclimate) sources of autocorrelation at the monthly time scale. Although tree-ring-based hydroclimate reconstructions are generally consistent with this null hypothesis, values ofβcalculated from long moisture-sensitive chronologies (as opposed to reconstructions) and other types of hydroclimate proxies exceed null expectations. Therefore it may be argued that there is more low-frequency variability in hydroclimate than monthly autocorrelation alone can generate. Coupled model results archived as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are consistent with the null hypothesis and appear unable to generate variance in hydroclimate commensurate with paleoclimate records. Consequently, at decadal-to-multidecadal time scales there is more variability in instrumental and proxy data than in the models, suggesting that the risk of prolonged droughts under climate change may be underestimated by CMIP5 simulations of the future.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-11-00732.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>20th century ; Americas ; Archives &amp; records ; Autocorrelation ; Climate ; Climate change ; Climate models ; Climatology. Bioclimatology. Climate change ; Continuums ; Drought ; Earth, ocean, space ; Energy spectra ; Exact sciences and technology ; External geophysics ; Frequency spectra ; Frequency spectrum ; General circulation models ; Growth rings ; Hydroclimate ; Hypotheses ; Intercomparison ; Meteorology ; Modeling ; Modelling ; Moisture effects ; Null hypothesis ; Paleoclimate ; Paleoclimatology ; Power spectra ; Precipitation ; Proxy client servers ; Reconstruction ; Soil water ; Spectral index ; Statistical variance ; Time series ; Tree rings ; Variability ; Variables ; Variance ; Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><ispartof>Journal of climate, 2013-08, Vol.26 (16), p.5863-5878</ispartof><rights>2013 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Aug 15, 2013</rights><rights>Copyright American Meteorological Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-4c19be7b2970aba0ecf475109186114fa503fe7eda0b139f2c9d7a59abce39fe3</citedby><cites>FETCH-LOGICAL-c429t-4c19be7b2970aba0ecf475109186114fa503fe7eda0b139f2c9d7a59abce39fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26192731$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26192731$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27643352$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ault, Toby R.</creatorcontrib><creatorcontrib>Cole, Julia E.</creatorcontrib><creatorcontrib>Overpeck, Jonathan T.</creatorcontrib><creatorcontrib>Pederson, Gregory T.</creatorcontrib><creatorcontrib>St. George, Scott</creatorcontrib><creatorcontrib>Otto-Bliesner, Bette</creatorcontrib><creatorcontrib>Woodhouse, Connie A.</creatorcontrib><creatorcontrib>Deser, Clara</creatorcontrib><title>The Continuum of Hydroclimate Variability in Western North America during the Last Millennium</title><title>Journal of climate</title><description>The distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here power spectra and power laws (β) are estimated from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in western North America (WNA). The significance of the estimates of spectral densities andβare tested against the null hypothesis that they reflect solely the effects of local (nonclimate) sources of autocorrelation at the monthly time scale. Although tree-ring-based hydroclimate reconstructions are generally consistent with this null hypothesis, values ofβcalculated from long moisture-sensitive chronologies (as opposed to reconstructions) and other types of hydroclimate proxies exceed null expectations. Therefore it may be argued that there is more low-frequency variability in hydroclimate than monthly autocorrelation alone can generate. Coupled model results archived as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are consistent with the null hypothesis and appear unable to generate variance in hydroclimate commensurate with paleoclimate records. Consequently, at decadal-to-multidecadal time scales there is more variability in instrumental and proxy data than in the models, suggesting that the risk of prolonged droughts under climate change may be underestimated by CMIP5 simulations of the future.</description><subject>20th century</subject><subject>Americas</subject><subject>Archives &amp; records</subject><subject>Autocorrelation</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Continuums</subject><subject>Drought</subject><subject>Earth, ocean, space</subject><subject>Energy spectra</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Frequency spectra</subject><subject>Frequency spectrum</subject><subject>General circulation models</subject><subject>Growth rings</subject><subject>Hydroclimate</subject><subject>Hypotheses</subject><subject>Intercomparison</subject><subject>Meteorology</subject><subject>Modeling</subject><subject>Modelling</subject><subject>Moisture effects</subject><subject>Null hypothesis</subject><subject>Paleoclimate</subject><subject>Paleoclimatology</subject><subject>Power spectra</subject><subject>Precipitation</subject><subject>Proxy client servers</subject><subject>Reconstruction</subject><subject>Soil water</subject><subject>Spectral index</subject><subject>Statistical variance</subject><subject>Time series</subject><subject>Tree rings</subject><subject>Variability</subject><subject>Variables</subject><subject>Variance</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1v1DAQhi0EEkvhB3BAsoSQuKTM-CNOjtUCbdEClwInZDmOQ71K7NZ2Dvvv67IVSBw4jUd-5tGrGUJeIpwiKvlub2ffjA1iA6A4O8VHZIOSQQNCsMdkA10vmk5J-ZQ8y3kPgKwF2JCfV9eObmMoPqzrQuNELw5jitW2mOLod5O8Gfzsy4H6QH-4XFwK9EtM5ZqeLS55a-i4Jh9-0VJNO5ML_ezn2YXg1-U5eTKZObsXD_WEfPv44Wp70ey-nl9uz3aNFawvjbDYD04NrFdgBgPOTkJJhB67FlFMRgKfnHKjgQF5PzHbj8rI3gzW1dbxE_L26L1J8XatIfXis3XzbIKLa9YouAAGSvKKvv4H3cc1hZpOs67KleCy_R-FQsB9rrarFB4pm2LOyU36JtW9pYNG0Pdn0Z-2u0v9vr7177NorDNvHswmWzNPyQTr859BplrBuWSVe3Xk9rnE9Pe_xZ4pjvwOeM2WnA</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>Ault, Toby R.</creator><creator>Cole, Julia E.</creator><creator>Overpeck, Jonathan T.</creator><creator>Pederson, Gregory T.</creator><creator>St. George, Scott</creator><creator>Otto-Bliesner, Bette</creator><creator>Woodhouse, Connie A.</creator><creator>Deser, Clara</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130815</creationdate><title>The Continuum of Hydroclimate Variability in Western North America during the Last Millennium</title><author>Ault, Toby R. ; Cole, Julia E. ; Overpeck, Jonathan T. ; Pederson, Gregory T. ; St. George, Scott ; Otto-Bliesner, Bette ; Woodhouse, Connie A. ; Deser, Clara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-4c19be7b2970aba0ecf475109186114fa503fe7eda0b139f2c9d7a59abce39fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>20th century</topic><topic>Americas</topic><topic>Archives &amp; records</topic><topic>Autocorrelation</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Continuums</topic><topic>Drought</topic><topic>Earth, ocean, space</topic><topic>Energy spectra</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Frequency spectra</topic><topic>Frequency spectrum</topic><topic>General circulation models</topic><topic>Growth rings</topic><topic>Hydroclimate</topic><topic>Hypotheses</topic><topic>Intercomparison</topic><topic>Meteorology</topic><topic>Modeling</topic><topic>Modelling</topic><topic>Moisture effects</topic><topic>Null hypothesis</topic><topic>Paleoclimate</topic><topic>Paleoclimatology</topic><topic>Power spectra</topic><topic>Precipitation</topic><topic>Proxy client servers</topic><topic>Reconstruction</topic><topic>Soil water</topic><topic>Spectral index</topic><topic>Statistical variance</topic><topic>Time series</topic><topic>Tree rings</topic><topic>Variability</topic><topic>Variables</topic><topic>Variance</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ault, Toby R.</creatorcontrib><creatorcontrib>Cole, Julia E.</creatorcontrib><creatorcontrib>Overpeck, Jonathan T.</creatorcontrib><creatorcontrib>Pederson, Gregory T.</creatorcontrib><creatorcontrib>St. George, Scott</creatorcontrib><creatorcontrib>Otto-Bliesner, Bette</creatorcontrib><creatorcontrib>Woodhouse, Connie A.</creatorcontrib><creatorcontrib>Deser, Clara</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ault, Toby R.</au><au>Cole, Julia E.</au><au>Overpeck, Jonathan T.</au><au>Pederson, Gregory T.</au><au>St. George, Scott</au><au>Otto-Bliesner, Bette</au><au>Woodhouse, Connie A.</au><au>Deser, Clara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Continuum of Hydroclimate Variability in Western North America during the Last Millennium</atitle><jtitle>Journal of climate</jtitle><date>2013-08-15</date><risdate>2013</risdate><volume>26</volume><issue>16</issue><spage>5863</spage><epage>5878</epage><pages>5863-5878</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here power spectra and power laws (β) are estimated from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in western North America (WNA). The significance of the estimates of spectral densities andβare tested against the null hypothesis that they reflect solely the effects of local (nonclimate) sources of autocorrelation at the monthly time scale. Although tree-ring-based hydroclimate reconstructions are generally consistent with this null hypothesis, values ofβcalculated from long moisture-sensitive chronologies (as opposed to reconstructions) and other types of hydroclimate proxies exceed null expectations. Therefore it may be argued that there is more low-frequency variability in hydroclimate than monthly autocorrelation alone can generate. Coupled model results archived as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are consistent with the null hypothesis and appear unable to generate variance in hydroclimate commensurate with paleoclimate records. Consequently, at decadal-to-multidecadal time scales there is more variability in instrumental and proxy data than in the models, suggesting that the risk of prolonged droughts under climate change may be underestimated by CMIP5 simulations of the future.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-11-00732.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2013-08, Vol.26 (16), p.5863-5878
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_1434020753
source American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects 20th century
Americas
Archives & records
Autocorrelation
Climate
Climate change
Climate models
Climatology. Bioclimatology. Climate change
Continuums
Drought
Earth, ocean, space
Energy spectra
Exact sciences and technology
External geophysics
Frequency spectra
Frequency spectrum
General circulation models
Growth rings
Hydroclimate
Hypotheses
Intercomparison
Meteorology
Modeling
Modelling
Moisture effects
Null hypothesis
Paleoclimate
Paleoclimatology
Power spectra
Precipitation
Proxy client servers
Reconstruction
Soil water
Spectral index
Statistical variance
Time series
Tree rings
Variability
Variables
Variance
Water in the atmosphere (humidity, clouds, evaporation, precipitation)
title The Continuum of Hydroclimate Variability in Western North America during the Last Millennium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Continuum%20of%20Hydroclimate%20Variability%20in%20Western%20North%20America%20during%20the%20Last%20Millennium&rft.jtitle=Journal%20of%20climate&rft.au=Ault,%20Toby%20R.&rft.date=2013-08-15&rft.volume=26&rft.issue=16&rft.spage=5863&rft.epage=5878&rft.pages=5863-5878&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-11-00732.1&rft_dat=%3Cjstor_proqu%3E26192731%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440186168&rft_id=info:pmid/&rft_jstor_id=26192731&rfr_iscdi=true