Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field
Summary Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effect...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2013-06, Vol.11 (5), p.628-639 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 639 |
---|---|
container_issue | 5 |
container_start_page | 628 |
container_title | Plant biotechnology journal |
container_volume | 11 |
creator | Robert, Christelle Aurélie Maud Erb, Matthias Hiltpold, Ivan Hibbard, Bruce Elliott Gaillard, Mickaël David Philippe Bilat, Julia Degenhardt, Jörg Cambet‐Petit‐Jean, Xavier Turlings, Ted Christiaan Joannes Zwahlen, Claudia |
description | Summary
Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above‐ and below ground. The transformation, which resulted in the constitutive emission of (E)‐β‐caryophyllene and α‐humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)‐β‐caryophyllene‐synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)‐β‐caryophyllene and α‐humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies. |
doi_str_mv | 10.1111/pbi.12053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434018621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1434018621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4193-b57d8f65dadc5ec825aa4efd0d17035150546c0eba2c40b1a96aca3289511b6c3</originalsourceid><addsrcrecordid>eNqNkU1PGzEQhi1UVGjaA38AWeqlHAIef232WKJCkZDooT1bXnsWjBxvWHtTpb--pqEcKiHqy9gzj1_NzEvIEbBTqOds3YVT4EyJPXIIUjfzRiv-5vku5QF5l_M9Yxy00m_JAReSKy3EIdlcYsISnI1xSzHdhoQ4oqcrG34hXUebSqYjbtBG6kMuIblC3ZBr1iZPu_q7D_Ux9DWbar1MJWyQboZoS4hIcRVyDrVEQ6LlDmkfMPr3ZL-3MeOHpzgjPy6-fF9-nV_fXF4tP1_PnYRWzDvV-EWvlbfeKXQLrqyV2HvmoWFCgWJKasews9xJ1oFttXVW8EWrADrtxIx82umux-FhwlxMbcdhrHPhMGUDUkgGC83hP1DOQIBq29dRoQST6rHHGfn4D3o_TGOqMxvBdKObhitRqZMd5cYh5xF7sx7Dyo5bA8w8WmyqxeaPxZU9flKcuhX6Z_KvpxU42wE_6_63LyuZb-dXO8nfuN6wVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067677253</pqid></control><display><type>article</type><title>Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field</title><source>Wiley Online Library Open Access</source><creator>Robert, Christelle Aurélie Maud ; Erb, Matthias ; Hiltpold, Ivan ; Hibbard, Bruce Elliott ; Gaillard, Mickaël David Philippe ; Bilat, Julia ; Degenhardt, Jörg ; Cambet‐Petit‐Jean, Xavier ; Turlings, Ted Christiaan Joannes ; Zwahlen, Claudia</creator><creatorcontrib>Robert, Christelle Aurélie Maud ; Erb, Matthias ; Hiltpold, Ivan ; Hibbard, Bruce Elliott ; Gaillard, Mickaël David Philippe ; Bilat, Julia ; Degenhardt, Jörg ; Cambet‐Petit‐Jean, Xavier ; Turlings, Ted Christiaan Joannes ; Zwahlen, Claudia</creatorcontrib><description>Summary
Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above‐ and below ground. The transformation, which resulted in the constitutive emission of (E)‐β‐caryophyllene and α‐humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)‐β‐caryophyllene‐synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)‐β‐caryophyllene and α‐humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12053</identifier><identifier>PMID: 23425633</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>(E)‐β‐caryophyllene ; aboveground herbivory ; Adults ; Alkyl and Aryl Transferases - metabolism ; Animals ; belowground herbivory ; beta-caryophyllene ; Biochemistry ; Biosynthesis ; Caryophyllene ; Corn ; cost benefit analysis ; Costs ; crop yield ; Damage ; Diabrotica undecimpunctata ; Diabrotica virgifera ; Diabrotica virgifera virgifera ; Ecological effects ; Ecology ; Emission ; Emissions ; Entomopathogenic nematodes ; environmental impact ; gene overexpression ; Genetic Engineering ; Genetic transformation ; Germination ; Herbivores ; Herbivory ; Humulene ; imagos ; Insecta - physiology ; Larvae ; Metabolism ; Nematoda ; Nematoda - physiology ; Pest control ; pest management ; Pests ; Physiological effects ; Physiology ; Plant Development ; Plant growth ; Plant resistance ; Plant Roots - physiology ; Plants, Genetically Modified ; Pollinators ; Risk Assessment ; Scholarly publishing ; Seed germination ; Sesquiterpenes - metabolism ; Spodoptera frugiperda ; Terpene synthase ; Terpenes - metabolism ; terpenoid‐engineered plants ; transgenes ; transgenic plants ; Trends ; volatile emission benefits ; volatile emission costs ; volatile organic compounds ; Volatile Organic Compounds - metabolism ; Zea mays ; Zea mays - enzymology ; Zea mays - genetics ; Zea mays - metabolism</subject><ispartof>Plant biotechnology journal, 2013-06, Vol.11 (5), p.628-639</ispartof><rights>2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd</rights><rights>2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2013. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4193-b57d8f65dadc5ec825aa4efd0d17035150546c0eba2c40b1a96aca3289511b6c3</citedby><cites>FETCH-LOGICAL-c4193-b57d8f65dadc5ec825aa4efd0d17035150546c0eba2c40b1a96aca3289511b6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12053$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12053$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12053$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23425633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robert, Christelle Aurélie Maud</creatorcontrib><creatorcontrib>Erb, Matthias</creatorcontrib><creatorcontrib>Hiltpold, Ivan</creatorcontrib><creatorcontrib>Hibbard, Bruce Elliott</creatorcontrib><creatorcontrib>Gaillard, Mickaël David Philippe</creatorcontrib><creatorcontrib>Bilat, Julia</creatorcontrib><creatorcontrib>Degenhardt, Jörg</creatorcontrib><creatorcontrib>Cambet‐Petit‐Jean, Xavier</creatorcontrib><creatorcontrib>Turlings, Ted Christiaan Joannes</creatorcontrib><creatorcontrib>Zwahlen, Claudia</creatorcontrib><title>Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above‐ and below ground. The transformation, which resulted in the constitutive emission of (E)‐β‐caryophyllene and α‐humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)‐β‐caryophyllene‐synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)‐β‐caryophyllene and α‐humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.</description><subject>(E)‐β‐caryophyllene</subject><subject>aboveground herbivory</subject><subject>Adults</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Animals</subject><subject>belowground herbivory</subject><subject>beta-caryophyllene</subject><subject>Biochemistry</subject><subject>Biosynthesis</subject><subject>Caryophyllene</subject><subject>Corn</subject><subject>cost benefit analysis</subject><subject>Costs</subject><subject>crop yield</subject><subject>Damage</subject><subject>Diabrotica undecimpunctata</subject><subject>Diabrotica virgifera</subject><subject>Diabrotica virgifera virgifera</subject><subject>Ecological effects</subject><subject>Ecology</subject><subject>Emission</subject><subject>Emissions</subject><subject>Entomopathogenic nematodes</subject><subject>environmental impact</subject><subject>gene overexpression</subject><subject>Genetic Engineering</subject><subject>Genetic transformation</subject><subject>Germination</subject><subject>Herbivores</subject><subject>Herbivory</subject><subject>Humulene</subject><subject>imagos</subject><subject>Insecta - physiology</subject><subject>Larvae</subject><subject>Metabolism</subject><subject>Nematoda</subject><subject>Nematoda - physiology</subject><subject>Pest control</subject><subject>pest management</subject><subject>Pests</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Plant Development</subject><subject>Plant growth</subject><subject>Plant resistance</subject><subject>Plant Roots - physiology</subject><subject>Plants, Genetically Modified</subject><subject>Pollinators</subject><subject>Risk Assessment</subject><subject>Scholarly publishing</subject><subject>Seed germination</subject><subject>Sesquiterpenes - metabolism</subject><subject>Spodoptera frugiperda</subject><subject>Terpene synthase</subject><subject>Terpenes - metabolism</subject><subject>terpenoid‐engineered plants</subject><subject>transgenes</subject><subject>transgenic plants</subject><subject>Trends</subject><subject>volatile emission benefits</subject><subject>volatile emission costs</subject><subject>volatile organic compounds</subject><subject>Volatile Organic Compounds - metabolism</subject><subject>Zea mays</subject><subject>Zea mays - enzymology</subject><subject>Zea mays - genetics</subject><subject>Zea mays - metabolism</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1PGzEQhi1UVGjaA38AWeqlHAIef232WKJCkZDooT1bXnsWjBxvWHtTpb--pqEcKiHqy9gzj1_NzEvIEbBTqOds3YVT4EyJPXIIUjfzRiv-5vku5QF5l_M9Yxy00m_JAReSKy3EIdlcYsISnI1xSzHdhoQ4oqcrG34hXUebSqYjbtBG6kMuIblC3ZBr1iZPu_q7D_Ux9DWbar1MJWyQboZoS4hIcRVyDrVEQ6LlDmkfMPr3ZL-3MeOHpzgjPy6-fF9-nV_fXF4tP1_PnYRWzDvV-EWvlbfeKXQLrqyV2HvmoWFCgWJKasews9xJ1oFttXVW8EWrADrtxIx82umux-FhwlxMbcdhrHPhMGUDUkgGC83hP1DOQIBq29dRoQST6rHHGfn4D3o_TGOqMxvBdKObhitRqZMd5cYh5xF7sx7Dyo5bA8w8WmyqxeaPxZU9flKcuhX6Z_KvpxU42wE_6_63LyuZb-dXO8nfuN6wVg</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Robert, Christelle Aurélie Maud</creator><creator>Erb, Matthias</creator><creator>Hiltpold, Ivan</creator><creator>Hibbard, Bruce Elliott</creator><creator>Gaillard, Mickaël David Philippe</creator><creator>Bilat, Julia</creator><creator>Degenhardt, Jörg</creator><creator>Cambet‐Petit‐Jean, Xavier</creator><creator>Turlings, Ted Christiaan Joannes</creator><creator>Zwahlen, Claudia</creator><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>RC3</scope></search><sort><creationdate>201306</creationdate><title>Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field</title><author>Robert, Christelle Aurélie Maud ; Erb, Matthias ; Hiltpold, Ivan ; Hibbard, Bruce Elliott ; Gaillard, Mickaël David Philippe ; Bilat, Julia ; Degenhardt, Jörg ; Cambet‐Petit‐Jean, Xavier ; Turlings, Ted Christiaan Joannes ; Zwahlen, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4193-b57d8f65dadc5ec825aa4efd0d17035150546c0eba2c40b1a96aca3289511b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>(E)‐β‐caryophyllene</topic><topic>aboveground herbivory</topic><topic>Adults</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Animals</topic><topic>belowground herbivory</topic><topic>beta-caryophyllene</topic><topic>Biochemistry</topic><topic>Biosynthesis</topic><topic>Caryophyllene</topic><topic>Corn</topic><topic>cost benefit analysis</topic><topic>Costs</topic><topic>crop yield</topic><topic>Damage</topic><topic>Diabrotica undecimpunctata</topic><topic>Diabrotica virgifera</topic><topic>Diabrotica virgifera virgifera</topic><topic>Ecological effects</topic><topic>Ecology</topic><topic>Emission</topic><topic>Emissions</topic><topic>Entomopathogenic nematodes</topic><topic>environmental impact</topic><topic>gene overexpression</topic><topic>Genetic Engineering</topic><topic>Genetic transformation</topic><topic>Germination</topic><topic>Herbivores</topic><topic>Herbivory</topic><topic>Humulene</topic><topic>imagos</topic><topic>Insecta - physiology</topic><topic>Larvae</topic><topic>Metabolism</topic><topic>Nematoda</topic><topic>Nematoda - physiology</topic><topic>Pest control</topic><topic>pest management</topic><topic>Pests</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Plant Development</topic><topic>Plant growth</topic><topic>Plant resistance</topic><topic>Plant Roots - physiology</topic><topic>Plants, Genetically Modified</topic><topic>Pollinators</topic><topic>Risk Assessment</topic><topic>Scholarly publishing</topic><topic>Seed germination</topic><topic>Sesquiterpenes - metabolism</topic><topic>Spodoptera frugiperda</topic><topic>Terpene synthase</topic><topic>Terpenes - metabolism</topic><topic>terpenoid‐engineered plants</topic><topic>transgenes</topic><topic>transgenic plants</topic><topic>Trends</topic><topic>volatile emission benefits</topic><topic>volatile emission costs</topic><topic>volatile organic compounds</topic><topic>Volatile Organic Compounds - metabolism</topic><topic>Zea mays</topic><topic>Zea mays - enzymology</topic><topic>Zea mays - genetics</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robert, Christelle Aurélie Maud</creatorcontrib><creatorcontrib>Erb, Matthias</creatorcontrib><creatorcontrib>Hiltpold, Ivan</creatorcontrib><creatorcontrib>Hibbard, Bruce Elliott</creatorcontrib><creatorcontrib>Gaillard, Mickaël David Philippe</creatorcontrib><creatorcontrib>Bilat, Julia</creatorcontrib><creatorcontrib>Degenhardt, Jörg</creatorcontrib><creatorcontrib>Cambet‐Petit‐Jean, Xavier</creatorcontrib><creatorcontrib>Turlings, Ted Christiaan Joannes</creatorcontrib><creatorcontrib>Zwahlen, Claudia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Genetics Abstracts</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Robert, Christelle Aurélie Maud</au><au>Erb, Matthias</au><au>Hiltpold, Ivan</au><au>Hibbard, Bruce Elliott</au><au>Gaillard, Mickaël David Philippe</au><au>Bilat, Julia</au><au>Degenhardt, Jörg</au><au>Cambet‐Petit‐Jean, Xavier</au><au>Turlings, Ted Christiaan Joannes</au><au>Zwahlen, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2013-06</date><risdate>2013</risdate><volume>11</volume><issue>5</issue><spage>628</spage><epage>639</epage><pages>628-639</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above‐ and below ground. The transformation, which resulted in the constitutive emission of (E)‐β‐caryophyllene and α‐humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)‐β‐caryophyllene‐synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)‐β‐caryophyllene and α‐humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>23425633</pmid><doi>10.1111/pbi.12053</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2013-06, Vol.11 (5), p.628-639 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_proquest_miscellaneous_1434018621 |
source | Wiley Online Library Open Access |
subjects | (E)‐β‐caryophyllene aboveground herbivory Adults Alkyl and Aryl Transferases - metabolism Animals belowground herbivory beta-caryophyllene Biochemistry Biosynthesis Caryophyllene Corn cost benefit analysis Costs crop yield Damage Diabrotica undecimpunctata Diabrotica virgifera Diabrotica virgifera virgifera Ecological effects Ecology Emission Emissions Entomopathogenic nematodes environmental impact gene overexpression Genetic Engineering Genetic transformation Germination Herbivores Herbivory Humulene imagos Insecta - physiology Larvae Metabolism Nematoda Nematoda - physiology Pest control pest management Pests Physiological effects Physiology Plant Development Plant growth Plant resistance Plant Roots - physiology Plants, Genetically Modified Pollinators Risk Assessment Scholarly publishing Seed germination Sesquiterpenes - metabolism Spodoptera frugiperda Terpene synthase Terpenes - metabolism terpenoid‐engineered plants transgenes transgenic plants Trends volatile emission benefits volatile emission costs volatile organic compounds Volatile Organic Compounds - metabolism Zea mays Zea mays - enzymology Zea mays - genetics Zea mays - metabolism |
title | Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20engineered%20maize%20plants%20reveal%20distinct%20costs%20and%20benefits%20of%20constitutive%20volatile%20emissions%20in%20the%20field&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Robert,%20Christelle%20Aur%C3%A9lie%20Maud&rft.date=2013-06&rft.volume=11&rft.issue=5&rft.spage=628&rft.epage=639&rft.pages=628-639&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12053&rft_dat=%3Cproquest_24P%3E1434018621%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067677253&rft_id=info:pmid/23425633&rfr_iscdi=true |