Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field

Summary Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2013-06, Vol.11 (5), p.628-639
Hauptverfasser: Robert, Christelle Aurélie Maud, Erb, Matthias, Hiltpold, Ivan, Hibbard, Bruce Elliott, Gaillard, Mickaël David Philippe, Bilat, Julia, Degenhardt, Jörg, Cambet‐Petit‐Jean, Xavier, Turlings, Ted Christiaan Joannes, Zwahlen, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 639
container_issue 5
container_start_page 628
container_title Plant biotechnology journal
container_volume 11
creator Robert, Christelle Aurélie Maud
Erb, Matthias
Hiltpold, Ivan
Hibbard, Bruce Elliott
Gaillard, Mickaël David Philippe
Bilat, Julia
Degenhardt, Jörg
Cambet‐Petit‐Jean, Xavier
Turlings, Ted Christiaan Joannes
Zwahlen, Claudia
description Summary Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above‐ and below ground. The transformation, which resulted in the constitutive emission of (E)‐β‐caryophyllene and α‐humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)‐β‐caryophyllene‐synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)‐β‐caryophyllene and α‐humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.
doi_str_mv 10.1111/pbi.12053
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434018621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1434018621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4193-b57d8f65dadc5ec825aa4efd0d17035150546c0eba2c40b1a96aca3289511b6c3</originalsourceid><addsrcrecordid>eNqNkU1PGzEQhi1UVGjaA38AWeqlHAIef232WKJCkZDooT1bXnsWjBxvWHtTpb--pqEcKiHqy9gzj1_NzEvIEbBTqOds3YVT4EyJPXIIUjfzRiv-5vku5QF5l_M9Yxy00m_JAReSKy3EIdlcYsISnI1xSzHdhoQ4oqcrG34hXUebSqYjbtBG6kMuIblC3ZBr1iZPu_q7D_Ux9DWbar1MJWyQboZoS4hIcRVyDrVEQ6LlDmkfMPr3ZL-3MeOHpzgjPy6-fF9-nV_fXF4tP1_PnYRWzDvV-EWvlbfeKXQLrqyV2HvmoWFCgWJKasews9xJ1oFttXVW8EWrADrtxIx82umux-FhwlxMbcdhrHPhMGUDUkgGC83hP1DOQIBq29dRoQST6rHHGfn4D3o_TGOqMxvBdKObhitRqZMd5cYh5xF7sx7Dyo5bA8w8WmyqxeaPxZU9flKcuhX6Z_KvpxU42wE_6_63LyuZb-dXO8nfuN6wVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067677253</pqid></control><display><type>article</type><title>Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field</title><source>Wiley Online Library Open Access</source><creator>Robert, Christelle Aurélie Maud ; Erb, Matthias ; Hiltpold, Ivan ; Hibbard, Bruce Elliott ; Gaillard, Mickaël David Philippe ; Bilat, Julia ; Degenhardt, Jörg ; Cambet‐Petit‐Jean, Xavier ; Turlings, Ted Christiaan Joannes ; Zwahlen, Claudia</creator><creatorcontrib>Robert, Christelle Aurélie Maud ; Erb, Matthias ; Hiltpold, Ivan ; Hibbard, Bruce Elliott ; Gaillard, Mickaël David Philippe ; Bilat, Julia ; Degenhardt, Jörg ; Cambet‐Petit‐Jean, Xavier ; Turlings, Ted Christiaan Joannes ; Zwahlen, Claudia</creatorcontrib><description>Summary Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above‐ and below ground. The transformation, which resulted in the constitutive emission of (E)‐β‐caryophyllene and α‐humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)‐β‐caryophyllene‐synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)‐β‐caryophyllene and α‐humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12053</identifier><identifier>PMID: 23425633</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>(E)‐β‐caryophyllene ; aboveground herbivory ; Adults ; Alkyl and Aryl Transferases - metabolism ; Animals ; belowground herbivory ; beta-caryophyllene ; Biochemistry ; Biosynthesis ; Caryophyllene ; Corn ; cost benefit analysis ; Costs ; crop yield ; Damage ; Diabrotica undecimpunctata ; Diabrotica virgifera ; Diabrotica virgifera virgifera ; Ecological effects ; Ecology ; Emission ; Emissions ; Entomopathogenic nematodes ; environmental impact ; gene overexpression ; Genetic Engineering ; Genetic transformation ; Germination ; Herbivores ; Herbivory ; Humulene ; imagos ; Insecta - physiology ; Larvae ; Metabolism ; Nematoda ; Nematoda - physiology ; Pest control ; pest management ; Pests ; Physiological effects ; Physiology ; Plant Development ; Plant growth ; Plant resistance ; Plant Roots - physiology ; Plants, Genetically Modified ; Pollinators ; Risk Assessment ; Scholarly publishing ; Seed germination ; Sesquiterpenes - metabolism ; Spodoptera frugiperda ; Terpene synthase ; Terpenes - metabolism ; terpenoid‐engineered plants ; transgenes ; transgenic plants ; Trends ; volatile emission benefits ; volatile emission costs ; volatile organic compounds ; Volatile Organic Compounds - metabolism ; Zea mays ; Zea mays - enzymology ; Zea mays - genetics ; Zea mays - metabolism</subject><ispartof>Plant biotechnology journal, 2013-06, Vol.11 (5), p.628-639</ispartof><rights>2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley &amp; Sons Ltd</rights><rights>2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2013. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4193-b57d8f65dadc5ec825aa4efd0d17035150546c0eba2c40b1a96aca3289511b6c3</citedby><cites>FETCH-LOGICAL-c4193-b57d8f65dadc5ec825aa4efd0d17035150546c0eba2c40b1a96aca3289511b6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12053$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12053$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12053$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23425633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robert, Christelle Aurélie Maud</creatorcontrib><creatorcontrib>Erb, Matthias</creatorcontrib><creatorcontrib>Hiltpold, Ivan</creatorcontrib><creatorcontrib>Hibbard, Bruce Elliott</creatorcontrib><creatorcontrib>Gaillard, Mickaël David Philippe</creatorcontrib><creatorcontrib>Bilat, Julia</creatorcontrib><creatorcontrib>Degenhardt, Jörg</creatorcontrib><creatorcontrib>Cambet‐Petit‐Jean, Xavier</creatorcontrib><creatorcontrib>Turlings, Ted Christiaan Joannes</creatorcontrib><creatorcontrib>Zwahlen, Claudia</creatorcontrib><title>Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above‐ and below ground. The transformation, which resulted in the constitutive emission of (E)‐β‐caryophyllene and α‐humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)‐β‐caryophyllene‐synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)‐β‐caryophyllene and α‐humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.</description><subject>(E)‐β‐caryophyllene</subject><subject>aboveground herbivory</subject><subject>Adults</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Animals</subject><subject>belowground herbivory</subject><subject>beta-caryophyllene</subject><subject>Biochemistry</subject><subject>Biosynthesis</subject><subject>Caryophyllene</subject><subject>Corn</subject><subject>cost benefit analysis</subject><subject>Costs</subject><subject>crop yield</subject><subject>Damage</subject><subject>Diabrotica undecimpunctata</subject><subject>Diabrotica virgifera</subject><subject>Diabrotica virgifera virgifera</subject><subject>Ecological effects</subject><subject>Ecology</subject><subject>Emission</subject><subject>Emissions</subject><subject>Entomopathogenic nematodes</subject><subject>environmental impact</subject><subject>gene overexpression</subject><subject>Genetic Engineering</subject><subject>Genetic transformation</subject><subject>Germination</subject><subject>Herbivores</subject><subject>Herbivory</subject><subject>Humulene</subject><subject>imagos</subject><subject>Insecta - physiology</subject><subject>Larvae</subject><subject>Metabolism</subject><subject>Nematoda</subject><subject>Nematoda - physiology</subject><subject>Pest control</subject><subject>pest management</subject><subject>Pests</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Plant Development</subject><subject>Plant growth</subject><subject>Plant resistance</subject><subject>Plant Roots - physiology</subject><subject>Plants, Genetically Modified</subject><subject>Pollinators</subject><subject>Risk Assessment</subject><subject>Scholarly publishing</subject><subject>Seed germination</subject><subject>Sesquiterpenes - metabolism</subject><subject>Spodoptera frugiperda</subject><subject>Terpene synthase</subject><subject>Terpenes - metabolism</subject><subject>terpenoid‐engineered plants</subject><subject>transgenes</subject><subject>transgenic plants</subject><subject>Trends</subject><subject>volatile emission benefits</subject><subject>volatile emission costs</subject><subject>volatile organic compounds</subject><subject>Volatile Organic Compounds - metabolism</subject><subject>Zea mays</subject><subject>Zea mays - enzymology</subject><subject>Zea mays - genetics</subject><subject>Zea mays - metabolism</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1PGzEQhi1UVGjaA38AWeqlHAIef232WKJCkZDooT1bXnsWjBxvWHtTpb--pqEcKiHqy9gzj1_NzEvIEbBTqOds3YVT4EyJPXIIUjfzRiv-5vku5QF5l_M9Yxy00m_JAReSKy3EIdlcYsISnI1xSzHdhoQ4oqcrG34hXUebSqYjbtBG6kMuIblC3ZBr1iZPu_q7D_Ux9DWbar1MJWyQboZoS4hIcRVyDrVEQ6LlDmkfMPr3ZL-3MeOHpzgjPy6-fF9-nV_fXF4tP1_PnYRWzDvV-EWvlbfeKXQLrqyV2HvmoWFCgWJKasews9xJ1oFttXVW8EWrADrtxIx82umux-FhwlxMbcdhrHPhMGUDUkgGC83hP1DOQIBq29dRoQST6rHHGfn4D3o_TGOqMxvBdKObhitRqZMd5cYh5xF7sx7Dyo5bA8w8WmyqxeaPxZU9flKcuhX6Z_KvpxU42wE_6_63LyuZb-dXO8nfuN6wVg</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Robert, Christelle Aurélie Maud</creator><creator>Erb, Matthias</creator><creator>Hiltpold, Ivan</creator><creator>Hibbard, Bruce Elliott</creator><creator>Gaillard, Mickaël David Philippe</creator><creator>Bilat, Julia</creator><creator>Degenhardt, Jörg</creator><creator>Cambet‐Petit‐Jean, Xavier</creator><creator>Turlings, Ted Christiaan Joannes</creator><creator>Zwahlen, Claudia</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>RC3</scope></search><sort><creationdate>201306</creationdate><title>Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field</title><author>Robert, Christelle Aurélie Maud ; Erb, Matthias ; Hiltpold, Ivan ; Hibbard, Bruce Elliott ; Gaillard, Mickaël David Philippe ; Bilat, Julia ; Degenhardt, Jörg ; Cambet‐Petit‐Jean, Xavier ; Turlings, Ted Christiaan Joannes ; Zwahlen, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4193-b57d8f65dadc5ec825aa4efd0d17035150546c0eba2c40b1a96aca3289511b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>(E)‐β‐caryophyllene</topic><topic>aboveground herbivory</topic><topic>Adults</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Animals</topic><topic>belowground herbivory</topic><topic>beta-caryophyllene</topic><topic>Biochemistry</topic><topic>Biosynthesis</topic><topic>Caryophyllene</topic><topic>Corn</topic><topic>cost benefit analysis</topic><topic>Costs</topic><topic>crop yield</topic><topic>Damage</topic><topic>Diabrotica undecimpunctata</topic><topic>Diabrotica virgifera</topic><topic>Diabrotica virgifera virgifera</topic><topic>Ecological effects</topic><topic>Ecology</topic><topic>Emission</topic><topic>Emissions</topic><topic>Entomopathogenic nematodes</topic><topic>environmental impact</topic><topic>gene overexpression</topic><topic>Genetic Engineering</topic><topic>Genetic transformation</topic><topic>Germination</topic><topic>Herbivores</topic><topic>Herbivory</topic><topic>Humulene</topic><topic>imagos</topic><topic>Insecta - physiology</topic><topic>Larvae</topic><topic>Metabolism</topic><topic>Nematoda</topic><topic>Nematoda - physiology</topic><topic>Pest control</topic><topic>pest management</topic><topic>Pests</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Plant Development</topic><topic>Plant growth</topic><topic>Plant resistance</topic><topic>Plant Roots - physiology</topic><topic>Plants, Genetically Modified</topic><topic>Pollinators</topic><topic>Risk Assessment</topic><topic>Scholarly publishing</topic><topic>Seed germination</topic><topic>Sesquiterpenes - metabolism</topic><topic>Spodoptera frugiperda</topic><topic>Terpene synthase</topic><topic>Terpenes - metabolism</topic><topic>terpenoid‐engineered plants</topic><topic>transgenes</topic><topic>transgenic plants</topic><topic>Trends</topic><topic>volatile emission benefits</topic><topic>volatile emission costs</topic><topic>volatile organic compounds</topic><topic>Volatile Organic Compounds - metabolism</topic><topic>Zea mays</topic><topic>Zea mays - enzymology</topic><topic>Zea mays - genetics</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robert, Christelle Aurélie Maud</creatorcontrib><creatorcontrib>Erb, Matthias</creatorcontrib><creatorcontrib>Hiltpold, Ivan</creatorcontrib><creatorcontrib>Hibbard, Bruce Elliott</creatorcontrib><creatorcontrib>Gaillard, Mickaël David Philippe</creatorcontrib><creatorcontrib>Bilat, Julia</creatorcontrib><creatorcontrib>Degenhardt, Jörg</creatorcontrib><creatorcontrib>Cambet‐Petit‐Jean, Xavier</creatorcontrib><creatorcontrib>Turlings, Ted Christiaan Joannes</creatorcontrib><creatorcontrib>Zwahlen, Claudia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Genetics Abstracts</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Robert, Christelle Aurélie Maud</au><au>Erb, Matthias</au><au>Hiltpold, Ivan</au><au>Hibbard, Bruce Elliott</au><au>Gaillard, Mickaël David Philippe</au><au>Bilat, Julia</au><au>Degenhardt, Jörg</au><au>Cambet‐Petit‐Jean, Xavier</au><au>Turlings, Ted Christiaan Joannes</au><au>Zwahlen, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2013-06</date><risdate>2013</risdate><volume>11</volume><issue>5</issue><spage>628</spage><epage>639</epage><pages>628-639</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above‐ and below ground. The transformation, which resulted in the constitutive emission of (E)‐β‐caryophyllene and α‐humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)‐β‐caryophyllene‐synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)‐β‐caryophyllene and α‐humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>23425633</pmid><doi>10.1111/pbi.12053</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2013-06, Vol.11 (5), p.628-639
issn 1467-7644
1467-7652
language eng
recordid cdi_proquest_miscellaneous_1434018621
source Wiley Online Library Open Access
subjects (E)‐β‐caryophyllene
aboveground herbivory
Adults
Alkyl and Aryl Transferases - metabolism
Animals
belowground herbivory
beta-caryophyllene
Biochemistry
Biosynthesis
Caryophyllene
Corn
cost benefit analysis
Costs
crop yield
Damage
Diabrotica undecimpunctata
Diabrotica virgifera
Diabrotica virgifera virgifera
Ecological effects
Ecology
Emission
Emissions
Entomopathogenic nematodes
environmental impact
gene overexpression
Genetic Engineering
Genetic transformation
Germination
Herbivores
Herbivory
Humulene
imagos
Insecta - physiology
Larvae
Metabolism
Nematoda
Nematoda - physiology
Pest control
pest management
Pests
Physiological effects
Physiology
Plant Development
Plant growth
Plant resistance
Plant Roots - physiology
Plants, Genetically Modified
Pollinators
Risk Assessment
Scholarly publishing
Seed germination
Sesquiterpenes - metabolism
Spodoptera frugiperda
Terpene synthase
Terpenes - metabolism
terpenoid‐engineered plants
transgenes
transgenic plants
Trends
volatile emission benefits
volatile emission costs
volatile organic compounds
Volatile Organic Compounds - metabolism
Zea mays
Zea mays - enzymology
Zea mays - genetics
Zea mays - metabolism
title Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20engineered%20maize%20plants%20reveal%20distinct%20costs%20and%20benefits%20of%20constitutive%20volatile%20emissions%20in%20the%20field&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Robert,%20Christelle%20Aur%C3%A9lie%20Maud&rft.date=2013-06&rft.volume=11&rft.issue=5&rft.spage=628&rft.epage=639&rft.pages=628-639&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12053&rft_dat=%3Cproquest_24P%3E1434018621%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067677253&rft_id=info:pmid/23425633&rfr_iscdi=true