Meiotic chromosome pairing in Actinidia chinensis var. deliciosa
Polyploids are defined as either autopolyploids or allopolyploids, depending on their mode of origin and/or chromosome pairing behaviour. Autopolyploids have chromosome sets that are the result of the duplication or combination of related genomes (e.g., AAAA), while allopolyploids result from the co...
Gespeichert in:
Veröffentlicht in: | Genetica 2012-12, Vol.140 (10-12), p.455-462 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 10-12 |
container_start_page | 455 |
container_title | Genetica |
container_volume | 140 |
creator | Mertten, D Tsang, G. K Manako, K. I McNeilage, M. A Datson, P. M |
description | Polyploids are defined as either autopolyploids or allopolyploids, depending on their mode of origin and/or chromosome pairing behaviour. Autopolyploids have chromosome sets that are the result of the duplication or combination of related genomes (e.g., AAAA), while allopolyploids result from the combination of sets of chromosomes from two or more different taxa (e.g., AABB, AABBCC). Allopolyploids are expected to show preferential pairing of homologous chromosomes from within each parental sub-genome, leading to disomic inheritance. In contrast, autopolyploids are expected to show random pairing of chromosomes (non-preferential pairing), potentially leading to polysomic inheritance. The two main cultivated taxa of Actinidia (kiwifruit) are A. chinensis (2x and 4x) and A. chinensis var. deliciosa (6x). There is debate whether A. chinensis var. deliciosa is an autopolyploid derived solely from A. chinensis or whether it is an allopolyploid derived from A. chinensis and one or two other Actinidia taxa. To investigate whether preferential or non-preferential chromosome pairing occurs in A. chinensis var. deliciosa, the inheritance of microsatellite alleles was analysed in the tetraploid progeny of a cross between A. chinensis var. deliciosa and the distantly related Actinidia eriantha Benth. (2x). The frequencies of inherited microsatellite allelic combinations in the hybrids suggested that non-preferential chromosome pairing had occurred in the A. chinensis var. deliciosa parent. Meiotic chromosome analysis showed predominantly bivalent formation in A. chinensis var. deliciosa, but a low frequency of quadrivalent chromosome formations was observed (1 observed in 20 pollen mother cells). |
doi_str_mv | 10.1007/s10709-012-9693-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434016741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283724996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-e3049dd2eeddeedb294828c7361ab76ebd183ddd937594593e9436661224365e3</originalsourceid><addsrcrecordid>eNqFkbtOAzEQRS0EgvD4ABpYiYZmwa-1dzoixEsCUUBqy1lPwCi7DnaCxN_jsAEhCihGU8y5dzRzCdln9IRRqk8To5pCSRkvQYEo-RoZsEqLUtWVXicDSpkqlaZ6i2yn9EIpBa1gk2xxwUAp0ANydoc-zH1TNM8xtCGFFouZ9dF3T4XvimEz95133ua577BLPhVvNp4UDqe-8SHZXbIxsdOEe6u-Q0aXF4_n1-Xt_dXN-fC2bCRU8xIFleAcR3Qu15iDrHndaKGYHWuFY8dq4ZwDoSuQFQgEKZRSjPPcKxQ75Lj3ncXwusA0N61PDU6ntsOwSIZJIfO5WrL_UV4LzSWAyujRL_QlLGKXD_mkGNdQLSnWU00MKUWcmFn0rY3vhlGzTML0SZichFkmYXjWHKycF-MW3bfi6_UZ4D2QZstvY_yx-g_Xw140scHYp-iTGT1wymTOVmqpufgAfeGaVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283127956</pqid></control><display><type>article</type><title>Meiotic chromosome pairing in Actinidia chinensis var. deliciosa</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mertten, D ; Tsang, G. K ; Manako, K. I ; McNeilage, M. A ; Datson, P. M</creator><creatorcontrib>Mertten, D ; Tsang, G. K ; Manako, K. I ; McNeilage, M. A ; Datson, P. M</creatorcontrib><description>Polyploids are defined as either autopolyploids or allopolyploids, depending on their mode of origin and/or chromosome pairing behaviour. Autopolyploids have chromosome sets that are the result of the duplication or combination of related genomes (e.g., AAAA), while allopolyploids result from the combination of sets of chromosomes from two or more different taxa (e.g., AABB, AABBCC). Allopolyploids are expected to show preferential pairing of homologous chromosomes from within each parental sub-genome, leading to disomic inheritance. In contrast, autopolyploids are expected to show random pairing of chromosomes (non-preferential pairing), potentially leading to polysomic inheritance. The two main cultivated taxa of Actinidia (kiwifruit) are A. chinensis (2x and 4x) and A. chinensis var. deliciosa (6x). There is debate whether A. chinensis var. deliciosa is an autopolyploid derived solely from A. chinensis or whether it is an allopolyploid derived from A. chinensis and one or two other Actinidia taxa. To investigate whether preferential or non-preferential chromosome pairing occurs in A. chinensis var. deliciosa, the inheritance of microsatellite alleles was analysed in the tetraploid progeny of a cross between A. chinensis var. deliciosa and the distantly related Actinidia eriantha Benth. (2x). The frequencies of inherited microsatellite allelic combinations in the hybrids suggested that non-preferential chromosome pairing had occurred in the A. chinensis var. deliciosa parent. Meiotic chromosome analysis showed predominantly bivalent formation in A. chinensis var. deliciosa, but a low frequency of quadrivalent chromosome formations was observed (1 observed in 20 pollen mother cells).</description><identifier>ISSN: 0016-6707</identifier><identifier>EISSN: 1573-6857</identifier><identifier>DOI: 10.1007/s10709-012-9693-2</identifier><identifier>PMID: 23196697</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Actinidia - genetics ; Actinidia chinensis ; Actinidia deliciosa ; Actinidia eriantha ; Alleles ; allopolyploidy ; Animal Genetics and Genomics ; autopolyploidy ; Biomedical and Life Sciences ; chromosome pairing ; Chromosome Pairing - genetics ; Chromosomes ; cytogenetic analysis ; Evolutionary Biology ; Fruit - genetics ; Human Genetics ; Hybrids ; inheritance (genetics) ; kiwifruit ; Life Sciences ; Meiosis - genetics ; Microbial Genetics and Genomics ; Microsatellite Repeats ; Plant Genetics and Genomics ; Pollen ; Pollen - genetics ; progeny ; Tetraploidy</subject><ispartof>Genetica, 2012-12, Vol.140 (10-12), p.455-462</ispartof><rights>Springer Science+Business Media Dordrecht 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-e3049dd2eeddeedb294828c7361ab76ebd183ddd937594593e9436661224365e3</citedby><cites>FETCH-LOGICAL-c495t-e3049dd2eeddeedb294828c7361ab76ebd183ddd937594593e9436661224365e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10709-012-9693-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10709-012-9693-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23196697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mertten, D</creatorcontrib><creatorcontrib>Tsang, G. K</creatorcontrib><creatorcontrib>Manako, K. I</creatorcontrib><creatorcontrib>McNeilage, M. A</creatorcontrib><creatorcontrib>Datson, P. M</creatorcontrib><title>Meiotic chromosome pairing in Actinidia chinensis var. deliciosa</title><title>Genetica</title><addtitle>Genetica</addtitle><addtitle>Genetica</addtitle><description>Polyploids are defined as either autopolyploids or allopolyploids, depending on their mode of origin and/or chromosome pairing behaviour. Autopolyploids have chromosome sets that are the result of the duplication or combination of related genomes (e.g., AAAA), while allopolyploids result from the combination of sets of chromosomes from two or more different taxa (e.g., AABB, AABBCC). Allopolyploids are expected to show preferential pairing of homologous chromosomes from within each parental sub-genome, leading to disomic inheritance. In contrast, autopolyploids are expected to show random pairing of chromosomes (non-preferential pairing), potentially leading to polysomic inheritance. The two main cultivated taxa of Actinidia (kiwifruit) are A. chinensis (2x and 4x) and A. chinensis var. deliciosa (6x). There is debate whether A. chinensis var. deliciosa is an autopolyploid derived solely from A. chinensis or whether it is an allopolyploid derived from A. chinensis and one or two other Actinidia taxa. To investigate whether preferential or non-preferential chromosome pairing occurs in A. chinensis var. deliciosa, the inheritance of microsatellite alleles was analysed in the tetraploid progeny of a cross between A. chinensis var. deliciosa and the distantly related Actinidia eriantha Benth. (2x). The frequencies of inherited microsatellite allelic combinations in the hybrids suggested that non-preferential chromosome pairing had occurred in the A. chinensis var. deliciosa parent. Meiotic chromosome analysis showed predominantly bivalent formation in A. chinensis var. deliciosa, but a low frequency of quadrivalent chromosome formations was observed (1 observed in 20 pollen mother cells).</description><subject>Actinidia - genetics</subject><subject>Actinidia chinensis</subject><subject>Actinidia deliciosa</subject><subject>Actinidia eriantha</subject><subject>Alleles</subject><subject>allopolyploidy</subject><subject>Animal Genetics and Genomics</subject><subject>autopolyploidy</subject><subject>Biomedical and Life Sciences</subject><subject>chromosome pairing</subject><subject>Chromosome Pairing - genetics</subject><subject>Chromosomes</subject><subject>cytogenetic analysis</subject><subject>Evolutionary Biology</subject><subject>Fruit - genetics</subject><subject>Human Genetics</subject><subject>Hybrids</subject><subject>inheritance (genetics)</subject><subject>kiwifruit</subject><subject>Life Sciences</subject><subject>Meiosis - genetics</subject><subject>Microbial Genetics and Genomics</subject><subject>Microsatellite Repeats</subject><subject>Plant Genetics and Genomics</subject><subject>Pollen</subject><subject>Pollen - genetics</subject><subject>progeny</subject><subject>Tetraploidy</subject><issn>0016-6707</issn><issn>1573-6857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkbtOAzEQRS0EgvD4ABpYiYZmwa-1dzoixEsCUUBqy1lPwCi7DnaCxN_jsAEhCihGU8y5dzRzCdln9IRRqk8To5pCSRkvQYEo-RoZsEqLUtWVXicDSpkqlaZ6i2yn9EIpBa1gk2xxwUAp0ANydoc-zH1TNM8xtCGFFouZ9dF3T4XvimEz95133ua577BLPhVvNp4UDqe-8SHZXbIxsdOEe6u-Q0aXF4_n1-Xt_dXN-fC2bCRU8xIFleAcR3Qu15iDrHndaKGYHWuFY8dq4ZwDoSuQFQgEKZRSjPPcKxQ75Lj3ncXwusA0N61PDU6ntsOwSIZJIfO5WrL_UV4LzSWAyujRL_QlLGKXD_mkGNdQLSnWU00MKUWcmFn0rY3vhlGzTML0SZichFkmYXjWHKycF-MW3bfi6_UZ4D2QZstvY_yx-g_Xw140scHYp-iTGT1wymTOVmqpufgAfeGaVQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Mertten, D</creator><creator>Tsang, G. K</creator><creator>Manako, K. I</creator><creator>McNeilage, M. A</creator><creator>Datson, P. M</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20121201</creationdate><title>Meiotic chromosome pairing in Actinidia chinensis var. deliciosa</title><author>Mertten, D ; Tsang, G. K ; Manako, K. I ; McNeilage, M. A ; Datson, P. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-e3049dd2eeddeedb294828c7361ab76ebd183ddd937594593e9436661224365e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actinidia - genetics</topic><topic>Actinidia chinensis</topic><topic>Actinidia deliciosa</topic><topic>Actinidia eriantha</topic><topic>Alleles</topic><topic>allopolyploidy</topic><topic>Animal Genetics and Genomics</topic><topic>autopolyploidy</topic><topic>Biomedical and Life Sciences</topic><topic>chromosome pairing</topic><topic>Chromosome Pairing - genetics</topic><topic>Chromosomes</topic><topic>cytogenetic analysis</topic><topic>Evolutionary Biology</topic><topic>Fruit - genetics</topic><topic>Human Genetics</topic><topic>Hybrids</topic><topic>inheritance (genetics)</topic><topic>kiwifruit</topic><topic>Life Sciences</topic><topic>Meiosis - genetics</topic><topic>Microbial Genetics and Genomics</topic><topic>Microsatellite Repeats</topic><topic>Plant Genetics and Genomics</topic><topic>Pollen</topic><topic>Pollen - genetics</topic><topic>progeny</topic><topic>Tetraploidy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mertten, D</creatorcontrib><creatorcontrib>Tsang, G. K</creatorcontrib><creatorcontrib>Manako, K. I</creatorcontrib><creatorcontrib>McNeilage, M. A</creatorcontrib><creatorcontrib>Datson, P. M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genetica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mertten, D</au><au>Tsang, G. K</au><au>Manako, K. I</au><au>McNeilage, M. A</au><au>Datson, P. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meiotic chromosome pairing in Actinidia chinensis var. deliciosa</atitle><jtitle>Genetica</jtitle><stitle>Genetica</stitle><addtitle>Genetica</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>140</volume><issue>10-12</issue><spage>455</spage><epage>462</epage><pages>455-462</pages><issn>0016-6707</issn><eissn>1573-6857</eissn><abstract>Polyploids are defined as either autopolyploids or allopolyploids, depending on their mode of origin and/or chromosome pairing behaviour. Autopolyploids have chromosome sets that are the result of the duplication or combination of related genomes (e.g., AAAA), while allopolyploids result from the combination of sets of chromosomes from two or more different taxa (e.g., AABB, AABBCC). Allopolyploids are expected to show preferential pairing of homologous chromosomes from within each parental sub-genome, leading to disomic inheritance. In contrast, autopolyploids are expected to show random pairing of chromosomes (non-preferential pairing), potentially leading to polysomic inheritance. The two main cultivated taxa of Actinidia (kiwifruit) are A. chinensis (2x and 4x) and A. chinensis var. deliciosa (6x). There is debate whether A. chinensis var. deliciosa is an autopolyploid derived solely from A. chinensis or whether it is an allopolyploid derived from A. chinensis and one or two other Actinidia taxa. To investigate whether preferential or non-preferential chromosome pairing occurs in A. chinensis var. deliciosa, the inheritance of microsatellite alleles was analysed in the tetraploid progeny of a cross between A. chinensis var. deliciosa and the distantly related Actinidia eriantha Benth. (2x). The frequencies of inherited microsatellite allelic combinations in the hybrids suggested that non-preferential chromosome pairing had occurred in the A. chinensis var. deliciosa parent. Meiotic chromosome analysis showed predominantly bivalent formation in A. chinensis var. deliciosa, but a low frequency of quadrivalent chromosome formations was observed (1 observed in 20 pollen mother cells).</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><pmid>23196697</pmid><doi>10.1007/s10709-012-9693-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6707 |
ispartof | Genetica, 2012-12, Vol.140 (10-12), p.455-462 |
issn | 0016-6707 1573-6857 |
language | eng |
recordid | cdi_proquest_miscellaneous_1434016741 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Actinidia - genetics Actinidia chinensis Actinidia deliciosa Actinidia eriantha Alleles allopolyploidy Animal Genetics and Genomics autopolyploidy Biomedical and Life Sciences chromosome pairing Chromosome Pairing - genetics Chromosomes cytogenetic analysis Evolutionary Biology Fruit - genetics Human Genetics Hybrids inheritance (genetics) kiwifruit Life Sciences Meiosis - genetics Microbial Genetics and Genomics Microsatellite Repeats Plant Genetics and Genomics Pollen Pollen - genetics progeny Tetraploidy |
title | Meiotic chromosome pairing in Actinidia chinensis var. deliciosa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meiotic%20chromosome%20pairing%20in%20Actinidia%20chinensis%20var.%20deliciosa&rft.jtitle=Genetica&rft.au=Mertten,%20D&rft.date=2012-12-01&rft.volume=140&rft.issue=10-12&rft.spage=455&rft.epage=462&rft.pages=455-462&rft.issn=0016-6707&rft.eissn=1573-6857&rft_id=info:doi/10.1007/s10709-012-9693-2&rft_dat=%3Cproquest_cross%3E1283724996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283127956&rft_id=info:pmid/23196697&rfr_iscdi=true |