Application of a simulated annealing optimization to a physically based erosion model
A major risk concerning the calibration of physically based erosion models has been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize the erosion parameters of an erosion model using data collected in an experimental...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2012-01, Vol.66 (10), p.2099-2108 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2108 |
---|---|
container_issue | 10 |
container_start_page | 2099 |
container_title | Water science and technology |
container_volume | 66 |
creator | Santos, C A G Freire, P K M M Arruda, P M |
description | A major risk concerning the calibration of physically based erosion models has been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize the erosion parameters of an erosion model using data collected in an experimental basin, with a global optimization method known as simulated annealing (SA) which is suitable for solving optimization problems of large scales. The physically based erosion model that was chosen to be optimized here is the Watershed Erosion Simulation Program (WESP), which was developed for small basins to generate the hydrograph and the respective sedigraph. The field data were collected in an experimental basin located in a semiarid region of Brazil. On the basis of these results, the following erosion parameters were optimized: the soil moisture-tension parameter (N(s)) that depends also on the initial moisture content, the channel erosion parameter (a), the soil detachability factor (K(R)), and the sediment entrainment parameter by rainfall impact (K(I)), whose values could serve as initial estimates for semiarid regions within northeastern Brazil. |
doi_str_mv | 10.2166/wst.2012.426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434015648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038228535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a375t-eab414d997896c1e9381b614e3d07a56cd612548e5d0b66ca55127b9b953ec873</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgWgpbMwoEgsDKbavH_FYIV4SEgudLSdxwZUThzgRKr8eVy0MLEwe_N0jHR2EzgmeUyLEzWcc5hQTOmdUHKApUUrkSgI9RFNMJeSEUpigkxjXGGMJDB-jCaWKKQpqipaLrvOuMoMLbRZWmcmia0ZvBltnpm2t8a59y0I3uMZ97dQQkureNzGdeb_JShMTtn2I298m1NafoqOV8dGe7d8ZWt7fvd4-5s8vD0-3i-fcgORDbk3JCKuVkoUSFbEKClIKwizUWBouqloQyllheY1LISrDOaGyVKXiYKtCwgxd7XK7PnyMNg66cbGy3pvWhjFqwlJfwgUr_qcYCkoLDjzRyz90Hca-TUU0UQykxAAsqeudqlLz2NuV7nrXmH6TovR2GZ2W0dtldFom8Yt96Fg2tv7FP1PAN4m_iEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943770334</pqid></control><display><type>article</type><title>Application of a simulated annealing optimization to a physically based erosion model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Santos, C A G ; Freire, P K M M ; Arruda, P M</creator><creatorcontrib>Santos, C A G ; Freire, P K M M ; Arruda, P M</creatorcontrib><description>A major risk concerning the calibration of physically based erosion models has been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize the erosion parameters of an erosion model using data collected in an experimental basin, with a global optimization method known as simulated annealing (SA) which is suitable for solving optimization problems of large scales. The physically based erosion model that was chosen to be optimized here is the Watershed Erosion Simulation Program (WESP), which was developed for small basins to generate the hydrograph and the respective sedigraph. The field data were collected in an experimental basin located in a semiarid region of Brazil. On the basis of these results, the following erosion parameters were optimized: the soil moisture-tension parameter (N(s)) that depends also on the initial moisture content, the channel erosion parameter (a), the soil detachability factor (K(R)), and the sediment entrainment parameter by rainfall impact (K(I)), whose values could serve as initial estimates for semiarid regions within northeastern Brazil.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2012.426</identifier><identifier>PMID: 22949239</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Algorithms ; Annealing ; Basins ; Calibration ; Channel erosion ; Computer Simulation ; Conservation of Natural Resources ; Data processing ; Entrainment ; Environment ; Environmental Monitoring - methods ; Erosion ; Experimental basins ; Geologic Sediments ; Global optimization ; Hydrology ; Kinematics ; Mathematical functions ; Mathematical models ; Models, Theoretical ; Moisture content ; Optimization ; Parameters ; Rain ; Rainfall ; Rainfall impact ; Runoff ; Sediments ; Semiarid lands ; Simulated annealing ; Soil ; Soil erosion ; Soil moisture ; Water content ; Watersheds</subject><ispartof>Water science and technology, 2012-01, Vol.66 (10), p.2099-2108</ispartof><rights>Copyright IWA Publishing Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a375t-eab414d997896c1e9381b614e3d07a56cd612548e5d0b66ca55127b9b953ec873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22949239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, C A G</creatorcontrib><creatorcontrib>Freire, P K M M</creatorcontrib><creatorcontrib>Arruda, P M</creatorcontrib><title>Application of a simulated annealing optimization to a physically based erosion model</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>A major risk concerning the calibration of physically based erosion models has been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize the erosion parameters of an erosion model using data collected in an experimental basin, with a global optimization method known as simulated annealing (SA) which is suitable for solving optimization problems of large scales. The physically based erosion model that was chosen to be optimized here is the Watershed Erosion Simulation Program (WESP), which was developed for small basins to generate the hydrograph and the respective sedigraph. The field data were collected in an experimental basin located in a semiarid region of Brazil. On the basis of these results, the following erosion parameters were optimized: the soil moisture-tension parameter (N(s)) that depends also on the initial moisture content, the channel erosion parameter (a), the soil detachability factor (K(R)), and the sediment entrainment parameter by rainfall impact (K(I)), whose values could serve as initial estimates for semiarid regions within northeastern Brazil.</description><subject>Algorithms</subject><subject>Annealing</subject><subject>Basins</subject><subject>Calibration</subject><subject>Channel erosion</subject><subject>Computer Simulation</subject><subject>Conservation of Natural Resources</subject><subject>Data processing</subject><subject>Entrainment</subject><subject>Environment</subject><subject>Environmental Monitoring - methods</subject><subject>Erosion</subject><subject>Experimental basins</subject><subject>Geologic Sediments</subject><subject>Global optimization</subject><subject>Hydrology</subject><subject>Kinematics</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Moisture content</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall impact</subject><subject>Runoff</subject><subject>Sediments</subject><subject>Semiarid lands</subject><subject>Simulated annealing</subject><subject>Soil</subject><subject>Soil erosion</subject><subject>Soil moisture</subject><subject>Water content</subject><subject>Watersheds</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0TtPwzAUBWALgWgpbMwoEgsDKbavH_FYIV4SEgudLSdxwZUThzgRKr8eVy0MLEwe_N0jHR2EzgmeUyLEzWcc5hQTOmdUHKApUUrkSgI9RFNMJeSEUpigkxjXGGMJDB-jCaWKKQpqipaLrvOuMoMLbRZWmcmia0ZvBltnpm2t8a59y0I3uMZ97dQQkureNzGdeb_JShMTtn2I298m1NafoqOV8dGe7d8ZWt7fvd4-5s8vD0-3i-fcgORDbk3JCKuVkoUSFbEKClIKwizUWBouqloQyllheY1LISrDOaGyVKXiYKtCwgxd7XK7PnyMNg66cbGy3pvWhjFqwlJfwgUr_qcYCkoLDjzRyz90Hca-TUU0UQykxAAsqeudqlLz2NuV7nrXmH6TovR2GZ2W0dtldFom8Yt96Fg2tv7FP1PAN4m_iEI</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Santos, C A G</creator><creator>Freire, P K M M</creator><creator>Arruda, P M</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20120101</creationdate><title>Application of a simulated annealing optimization to a physically based erosion model</title><author>Santos, C A G ; Freire, P K M M ; Arruda, P M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a375t-eab414d997896c1e9381b614e3d07a56cd612548e5d0b66ca55127b9b953ec873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Annealing</topic><topic>Basins</topic><topic>Calibration</topic><topic>Channel erosion</topic><topic>Computer Simulation</topic><topic>Conservation of Natural Resources</topic><topic>Data processing</topic><topic>Entrainment</topic><topic>Environment</topic><topic>Environmental Monitoring - methods</topic><topic>Erosion</topic><topic>Experimental basins</topic><topic>Geologic Sediments</topic><topic>Global optimization</topic><topic>Hydrology</topic><topic>Kinematics</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Moisture content</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall impact</topic><topic>Runoff</topic><topic>Sediments</topic><topic>Semiarid lands</topic><topic>Simulated annealing</topic><topic>Soil</topic><topic>Soil erosion</topic><topic>Soil moisture</topic><topic>Water content</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, C A G</creatorcontrib><creatorcontrib>Freire, P K M M</creatorcontrib><creatorcontrib>Arruda, P M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, C A G</au><au>Freire, P K M M</au><au>Arruda, P M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a simulated annealing optimization to a physically based erosion model</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>66</volume><issue>10</issue><spage>2099</spage><epage>2108</epage><pages>2099-2108</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>A major risk concerning the calibration of physically based erosion models has been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize the erosion parameters of an erosion model using data collected in an experimental basin, with a global optimization method known as simulated annealing (SA) which is suitable for solving optimization problems of large scales. The physically based erosion model that was chosen to be optimized here is the Watershed Erosion Simulation Program (WESP), which was developed for small basins to generate the hydrograph and the respective sedigraph. The field data were collected in an experimental basin located in a semiarid region of Brazil. On the basis of these results, the following erosion parameters were optimized: the soil moisture-tension parameter (N(s)) that depends also on the initial moisture content, the channel erosion parameter (a), the soil detachability factor (K(R)), and the sediment entrainment parameter by rainfall impact (K(I)), whose values could serve as initial estimates for semiarid regions within northeastern Brazil.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>22949239</pmid><doi>10.2166/wst.2012.426</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2012-01, Vol.66 (10), p.2099-2108 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_1434015648 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Annealing Basins Calibration Channel erosion Computer Simulation Conservation of Natural Resources Data processing Entrainment Environment Environmental Monitoring - methods Erosion Experimental basins Geologic Sediments Global optimization Hydrology Kinematics Mathematical functions Mathematical models Models, Theoretical Moisture content Optimization Parameters Rain Rainfall Rainfall impact Runoff Sediments Semiarid lands Simulated annealing Soil Soil erosion Soil moisture Water content Watersheds |
title | Application of a simulated annealing optimization to a physically based erosion model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20simulated%20annealing%20optimization%20to%20a%20physically%20based%20erosion%20model&rft.jtitle=Water%20science%20and%20technology&rft.au=Santos,%20C%20A%20G&rft.date=2012-01-01&rft.volume=66&rft.issue=10&rft.spage=2099&rft.epage=2108&rft.pages=2099-2108&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2012.426&rft_dat=%3Cproquest_cross%3E1038228535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943770334&rft_id=info:pmid/22949239&rfr_iscdi=true |