Application of a simulated annealing optimization to a physically based erosion model

A major risk concerning the calibration of physically based erosion models has been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize the erosion parameters of an erosion model using data collected in an experimental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2012-01, Vol.66 (10), p.2099-2108
Hauptverfasser: Santos, C A G, Freire, P K M M, Arruda, P M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2108
container_issue 10
container_start_page 2099
container_title Water science and technology
container_volume 66
creator Santos, C A G
Freire, P K M M
Arruda, P M
description A major risk concerning the calibration of physically based erosion models has been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize the erosion parameters of an erosion model using data collected in an experimental basin, with a global optimization method known as simulated annealing (SA) which is suitable for solving optimization problems of large scales. The physically based erosion model that was chosen to be optimized here is the Watershed Erosion Simulation Program (WESP), which was developed for small basins to generate the hydrograph and the respective sedigraph. The field data were collected in an experimental basin located in a semiarid region of Brazil. On the basis of these results, the following erosion parameters were optimized: the soil moisture-tension parameter (N(s)) that depends also on the initial moisture content, the channel erosion parameter (a), the soil detachability factor (K(R)), and the sediment entrainment parameter by rainfall impact (K(I)), whose values could serve as initial estimates for semiarid regions within northeastern Brazil.
doi_str_mv 10.2166/wst.2012.426
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434015648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038228535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a375t-eab414d997896c1e9381b614e3d07a56cd612548e5d0b66ca55127b9b953ec873</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgWgpbMwoEgsDKbavH_FYIV4SEgudLSdxwZUThzgRKr8eVy0MLEwe_N0jHR2EzgmeUyLEzWcc5hQTOmdUHKApUUrkSgI9RFNMJeSEUpigkxjXGGMJDB-jCaWKKQpqipaLrvOuMoMLbRZWmcmia0ZvBltnpm2t8a59y0I3uMZ97dQQkureNzGdeb_JShMTtn2I298m1NafoqOV8dGe7d8ZWt7fvd4-5s8vD0-3i-fcgORDbk3JCKuVkoUSFbEKClIKwizUWBouqloQyllheY1LISrDOaGyVKXiYKtCwgxd7XK7PnyMNg66cbGy3pvWhjFqwlJfwgUr_qcYCkoLDjzRyz90Hca-TUU0UQykxAAsqeudqlLz2NuV7nrXmH6TovR2GZ2W0dtldFom8Yt96Fg2tv7FP1PAN4m_iEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943770334</pqid></control><display><type>article</type><title>Application of a simulated annealing optimization to a physically based erosion model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Santos, C A G ; Freire, P K M M ; Arruda, P M</creator><creatorcontrib>Santos, C A G ; Freire, P K M M ; Arruda, P M</creatorcontrib><description>A major risk concerning the calibration of physically based erosion models has been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize the erosion parameters of an erosion model using data collected in an experimental basin, with a global optimization method known as simulated annealing (SA) which is suitable for solving optimization problems of large scales. The physically based erosion model that was chosen to be optimized here is the Watershed Erosion Simulation Program (WESP), which was developed for small basins to generate the hydrograph and the respective sedigraph. The field data were collected in an experimental basin located in a semiarid region of Brazil. On the basis of these results, the following erosion parameters were optimized: the soil moisture-tension parameter (N(s)) that depends also on the initial moisture content, the channel erosion parameter (a), the soil detachability factor (K(R)), and the sediment entrainment parameter by rainfall impact (K(I)), whose values could serve as initial estimates for semiarid regions within northeastern Brazil.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2012.426</identifier><identifier>PMID: 22949239</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Algorithms ; Annealing ; Basins ; Calibration ; Channel erosion ; Computer Simulation ; Conservation of Natural Resources ; Data processing ; Entrainment ; Environment ; Environmental Monitoring - methods ; Erosion ; Experimental basins ; Geologic Sediments ; Global optimization ; Hydrology ; Kinematics ; Mathematical functions ; Mathematical models ; Models, Theoretical ; Moisture content ; Optimization ; Parameters ; Rain ; Rainfall ; Rainfall impact ; Runoff ; Sediments ; Semiarid lands ; Simulated annealing ; Soil ; Soil erosion ; Soil moisture ; Water content ; Watersheds</subject><ispartof>Water science and technology, 2012-01, Vol.66 (10), p.2099-2108</ispartof><rights>Copyright IWA Publishing Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a375t-eab414d997896c1e9381b614e3d07a56cd612548e5d0b66ca55127b9b953ec873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22949239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, C A G</creatorcontrib><creatorcontrib>Freire, P K M M</creatorcontrib><creatorcontrib>Arruda, P M</creatorcontrib><title>Application of a simulated annealing optimization to a physically based erosion model</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>A major risk concerning the calibration of physically based erosion models has been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize the erosion parameters of an erosion model using data collected in an experimental basin, with a global optimization method known as simulated annealing (SA) which is suitable for solving optimization problems of large scales. The physically based erosion model that was chosen to be optimized here is the Watershed Erosion Simulation Program (WESP), which was developed for small basins to generate the hydrograph and the respective sedigraph. The field data were collected in an experimental basin located in a semiarid region of Brazil. On the basis of these results, the following erosion parameters were optimized: the soil moisture-tension parameter (N(s)) that depends also on the initial moisture content, the channel erosion parameter (a), the soil detachability factor (K(R)), and the sediment entrainment parameter by rainfall impact (K(I)), whose values could serve as initial estimates for semiarid regions within northeastern Brazil.</description><subject>Algorithms</subject><subject>Annealing</subject><subject>Basins</subject><subject>Calibration</subject><subject>Channel erosion</subject><subject>Computer Simulation</subject><subject>Conservation of Natural Resources</subject><subject>Data processing</subject><subject>Entrainment</subject><subject>Environment</subject><subject>Environmental Monitoring - methods</subject><subject>Erosion</subject><subject>Experimental basins</subject><subject>Geologic Sediments</subject><subject>Global optimization</subject><subject>Hydrology</subject><subject>Kinematics</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Moisture content</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall impact</subject><subject>Runoff</subject><subject>Sediments</subject><subject>Semiarid lands</subject><subject>Simulated annealing</subject><subject>Soil</subject><subject>Soil erosion</subject><subject>Soil moisture</subject><subject>Water content</subject><subject>Watersheds</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0TtPwzAUBWALgWgpbMwoEgsDKbavH_FYIV4SEgudLSdxwZUThzgRKr8eVy0MLEwe_N0jHR2EzgmeUyLEzWcc5hQTOmdUHKApUUrkSgI9RFNMJeSEUpigkxjXGGMJDB-jCaWKKQpqipaLrvOuMoMLbRZWmcmia0ZvBltnpm2t8a59y0I3uMZ97dQQkureNzGdeb_JShMTtn2I298m1NafoqOV8dGe7d8ZWt7fvd4-5s8vD0-3i-fcgORDbk3JCKuVkoUSFbEKClIKwizUWBouqloQyllheY1LISrDOaGyVKXiYKtCwgxd7XK7PnyMNg66cbGy3pvWhjFqwlJfwgUr_qcYCkoLDjzRyz90Hca-TUU0UQykxAAsqeudqlLz2NuV7nrXmH6TovR2GZ2W0dtldFom8Yt96Fg2tv7FP1PAN4m_iEI</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Santos, C A G</creator><creator>Freire, P K M M</creator><creator>Arruda, P M</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20120101</creationdate><title>Application of a simulated annealing optimization to a physically based erosion model</title><author>Santos, C A G ; Freire, P K M M ; Arruda, P M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a375t-eab414d997896c1e9381b614e3d07a56cd612548e5d0b66ca55127b9b953ec873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Annealing</topic><topic>Basins</topic><topic>Calibration</topic><topic>Channel erosion</topic><topic>Computer Simulation</topic><topic>Conservation of Natural Resources</topic><topic>Data processing</topic><topic>Entrainment</topic><topic>Environment</topic><topic>Environmental Monitoring - methods</topic><topic>Erosion</topic><topic>Experimental basins</topic><topic>Geologic Sediments</topic><topic>Global optimization</topic><topic>Hydrology</topic><topic>Kinematics</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Moisture content</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall impact</topic><topic>Runoff</topic><topic>Sediments</topic><topic>Semiarid lands</topic><topic>Simulated annealing</topic><topic>Soil</topic><topic>Soil erosion</topic><topic>Soil moisture</topic><topic>Water content</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, C A G</creatorcontrib><creatorcontrib>Freire, P K M M</creatorcontrib><creatorcontrib>Arruda, P M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, C A G</au><au>Freire, P K M M</au><au>Arruda, P M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a simulated annealing optimization to a physically based erosion model</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>66</volume><issue>10</issue><spage>2099</spage><epage>2108</epage><pages>2099-2108</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>A major risk concerning the calibration of physically based erosion models has been partly attributable to the lack of robust optimization tools. This paper presents the essential concepts and application to optimize the erosion parameters of an erosion model using data collected in an experimental basin, with a global optimization method known as simulated annealing (SA) which is suitable for solving optimization problems of large scales. The physically based erosion model that was chosen to be optimized here is the Watershed Erosion Simulation Program (WESP), which was developed for small basins to generate the hydrograph and the respective sedigraph. The field data were collected in an experimental basin located in a semiarid region of Brazil. On the basis of these results, the following erosion parameters were optimized: the soil moisture-tension parameter (N(s)) that depends also on the initial moisture content, the channel erosion parameter (a), the soil detachability factor (K(R)), and the sediment entrainment parameter by rainfall impact (K(I)), whose values could serve as initial estimates for semiarid regions within northeastern Brazil.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>22949239</pmid><doi>10.2166/wst.2012.426</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2012-01, Vol.66 (10), p.2099-2108
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_1434015648
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Annealing
Basins
Calibration
Channel erosion
Computer Simulation
Conservation of Natural Resources
Data processing
Entrainment
Environment
Environmental Monitoring - methods
Erosion
Experimental basins
Geologic Sediments
Global optimization
Hydrology
Kinematics
Mathematical functions
Mathematical models
Models, Theoretical
Moisture content
Optimization
Parameters
Rain
Rainfall
Rainfall impact
Runoff
Sediments
Semiarid lands
Simulated annealing
Soil
Soil erosion
Soil moisture
Water content
Watersheds
title Application of a simulated annealing optimization to a physically based erosion model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20simulated%20annealing%20optimization%20to%20a%20physically%20based%20erosion%20model&rft.jtitle=Water%20science%20and%20technology&rft.au=Santos,%20C%20A%20G&rft.date=2012-01-01&rft.volume=66&rft.issue=10&rft.spage=2099&rft.epage=2108&rft.pages=2099-2108&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2012.426&rft_dat=%3Cproquest_cross%3E1038228535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943770334&rft_id=info:pmid/22949239&rfr_iscdi=true