A forecasting method to reduce estimation bias in self-reported cell phone data
There is ongoing concern that extended exposure to cell phone electromagnetic radiation could be related to an increased risk of negative health effects. Epidemiological studies seek to assess this risk, usually relying on participants’ recalled use, but recall is notoriously poor. Our objectives we...
Gespeichert in:
Veröffentlicht in: | Journal of exposure science & environmental epidemiology 2013-09, Vol.23 (5), p.539-544 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 544 |
---|---|
container_issue | 5 |
container_start_page | 539 |
container_title | Journal of exposure science & environmental epidemiology |
container_volume | 23 |
creator | Redmayne, Mary Smith, Euan Abramson, Michael J |
description | There is ongoing concern that extended exposure to cell phone electromagnetic radiation could be related to an increased risk of negative health effects. Epidemiological studies seek to assess this risk, usually relying on participants’ recalled use, but recall is notoriously poor. Our objectives were primarily to produce a forecast method, for use by such studies, to reduce estimation bias in the recalled extent of cell phone use. The method we developed, using Bayes’ rule, is modelled with data we collected in a cross-sectional cluster survey exploring cell phone user-habits among New Zealand adolescents. Participants recalled their recent extent of SMS-texting and retrieved from their provider the current month's actual use-to-date. Actual use was taken as the gold standard in the analyses. Estimation bias arose from a large random error, as observed in all cell phone validation studies. We demonstrate that this seriously exaggerates upper-end forecasts of use when used in regression models. This means that calculations using a regression model will lead to underestimation of heavy-users’ relative risk. Our Bayesian method substantially reduces estimation bias. In cases where other studies’ data conforms to our method's requirements, application should reduce estimation bias, leading to a more accurate relative risk calculation for mid-to-heavy users. |
doi_str_mv | 10.1038/jes.2012.70 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434014882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A344497027</galeid><sourcerecordid>A344497027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-f9edfe68c1867b02de0f0b2998bdf9b7d60a6b3232bf8e39abf4879cafcbf8043</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhhtR3A89eZeAIILOWPnodHIcFleFhb0oeAvppDLTQ3dnTLoP--9NM-u6K4tIDgmVp95Upd6qekVhTYGrj3vMawaUrRt4Up3SutYrkOLH07szpyfVWc57ACEaCc-rE8YU1FqJ0-p6Q0JM6GyeunFLBpx20ZMpkoR-dkiwxAc7dXEkbWcz6UaSsQ-rhIeYJvTEYd-Twy6OSLyd7IvqWbB9xpe3-3n1_fLTt4svq6vrz18vNlcrV9cwrYJGH1AqR5VsWmAeIUDLtFatD7ptvAQrW844a4NCrm0bhGq0s8GVAAh-Xr076h5S_DmXKs3Q5aUWO2Kcs6GCC6BCKfYfKJNaa05lQd_8he7jnMbSiGFSgKSS6uZf1KJVc93o-g-1tT2abgxxStYtT5sNF0LoBtiitX6EKsvj0Lnyq6Er8QcJb-8l7ND20y7Hfl5GlB-C74-gSzHnhMEcUhllujEUzGIcU4xjFuOYBgr9-ranuR3Q37G_nVKAD0cgl6txi-le04_o_QKhfskE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426539795</pqid></control><display><type>article</type><title>A forecasting method to reduce estimation bias in self-reported cell phone data</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Redmayne, Mary ; Smith, Euan ; Abramson, Michael J</creator><creatorcontrib>Redmayne, Mary ; Smith, Euan ; Abramson, Michael J</creatorcontrib><description>There is ongoing concern that extended exposure to cell phone electromagnetic radiation could be related to an increased risk of negative health effects. Epidemiological studies seek to assess this risk, usually relying on participants’ recalled use, but recall is notoriously poor. Our objectives were primarily to produce a forecast method, for use by such studies, to reduce estimation bias in the recalled extent of cell phone use. The method we developed, using Bayes’ rule, is modelled with data we collected in a cross-sectional cluster survey exploring cell phone user-habits among New Zealand adolescents. Participants recalled their recent extent of SMS-texting and retrieved from their provider the current month's actual use-to-date. Actual use was taken as the gold standard in the analyses. Estimation bias arose from a large random error, as observed in all cell phone validation studies. We demonstrate that this seriously exaggerates upper-end forecasts of use when used in regression models. This means that calculations using a regression model will lead to underestimation of heavy-users’ relative risk. Our Bayesian method substantially reduces estimation bias. In cases where other studies’ data conforms to our method's requirements, application should reduce estimation bias, leading to a more accurate relative risk calculation for mid-to-heavy users.</description><identifier>ISSN: 1559-0631</identifier><identifier>EISSN: 1559-064X</identifier><identifier>DOI: 10.1038/jes.2012.70</identifier><identifier>PMID: 22805984</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>639/925/929/170 ; 692/700/478 ; Adolescent ; Adolescents ; Analysis ; Bayesian analysis ; Bias ; Cell Phone ; Cell phones ; Cellular telephones ; Electric waves ; Electromagnetic Fields ; Electromagnetic radiation ; Electromagnetic waves ; Environmental Exposure ; Epidemiology ; Forecasting ; Humans ; Mathematical models ; Medicine ; Medicine & Public Health ; New Zealand ; Nuclear radiation ; original-article ; Random errors ; Regression analysis ; Regression models ; Reproducibility of Results ; Short message service ; Text messaging</subject><ispartof>Journal of exposure science & environmental epidemiology, 2013-09, Vol.23 (5), p.539-544</ispartof><rights>Nature America, Inc. 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2013</rights><rights>Nature America, Inc. 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-f9edfe68c1867b02de0f0b2998bdf9b7d60a6b3232bf8e39abf4879cafcbf8043</citedby><cites>FETCH-LOGICAL-c550t-f9edfe68c1867b02de0f0b2998bdf9b7d60a6b3232bf8e39abf4879cafcbf8043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22805984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Redmayne, Mary</creatorcontrib><creatorcontrib>Smith, Euan</creatorcontrib><creatorcontrib>Abramson, Michael J</creatorcontrib><title>A forecasting method to reduce estimation bias in self-reported cell phone data</title><title>Journal of exposure science & environmental epidemiology</title><addtitle>J Expo Sci Environ Epidemiol</addtitle><addtitle>J Expo Sci Environ Epidemiol</addtitle><description>There is ongoing concern that extended exposure to cell phone electromagnetic radiation could be related to an increased risk of negative health effects. Epidemiological studies seek to assess this risk, usually relying on participants’ recalled use, but recall is notoriously poor. Our objectives were primarily to produce a forecast method, for use by such studies, to reduce estimation bias in the recalled extent of cell phone use. The method we developed, using Bayes’ rule, is modelled with data we collected in a cross-sectional cluster survey exploring cell phone user-habits among New Zealand adolescents. Participants recalled their recent extent of SMS-texting and retrieved from their provider the current month's actual use-to-date. Actual use was taken as the gold standard in the analyses. Estimation bias arose from a large random error, as observed in all cell phone validation studies. We demonstrate that this seriously exaggerates upper-end forecasts of use when used in regression models. This means that calculations using a regression model will lead to underestimation of heavy-users’ relative risk. Our Bayesian method substantially reduces estimation bias. In cases where other studies’ data conforms to our method's requirements, application should reduce estimation bias, leading to a more accurate relative risk calculation for mid-to-heavy users.</description><subject>639/925/929/170</subject><subject>692/700/478</subject><subject>Adolescent</subject><subject>Adolescents</subject><subject>Analysis</subject><subject>Bayesian analysis</subject><subject>Bias</subject><subject>Cell Phone</subject><subject>Cell phones</subject><subject>Cellular telephones</subject><subject>Electric waves</subject><subject>Electromagnetic Fields</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic waves</subject><subject>Environmental Exposure</subject><subject>Epidemiology</subject><subject>Forecasting</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>New Zealand</subject><subject>Nuclear radiation</subject><subject>original-article</subject><subject>Random errors</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Reproducibility of Results</subject><subject>Short message service</subject><subject>Text messaging</subject><issn>1559-0631</issn><issn>1559-064X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk2LFDEQhhtR3A89eZeAIILOWPnodHIcFleFhb0oeAvppDLTQ3dnTLoP--9NM-u6K4tIDgmVp95Upd6qekVhTYGrj3vMawaUrRt4Up3SutYrkOLH07szpyfVWc57ACEaCc-rE8YU1FqJ0-p6Q0JM6GyeunFLBpx20ZMpkoR-dkiwxAc7dXEkbWcz6UaSsQ-rhIeYJvTEYd-Twy6OSLyd7IvqWbB9xpe3-3n1_fLTt4svq6vrz18vNlcrV9cwrYJGH1AqR5VsWmAeIUDLtFatD7ptvAQrW844a4NCrm0bhGq0s8GVAAh-Xr076h5S_DmXKs3Q5aUWO2Kcs6GCC6BCKfYfKJNaa05lQd_8he7jnMbSiGFSgKSS6uZf1KJVc93o-g-1tT2abgxxStYtT5sNF0LoBtiitX6EKsvj0Lnyq6Er8QcJb-8l7ND20y7Hfl5GlB-C74-gSzHnhMEcUhllujEUzGIcU4xjFuOYBgr9-ranuR3Q37G_nVKAD0cgl6txi-le04_o_QKhfskE</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Redmayne, Mary</creator><creator>Smith, Euan</creator><creator>Abramson, Michael J</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7ST</scope><scope>7T2</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><scope>7TG</scope><scope>7U1</scope><scope>7U2</scope><scope>KL.</scope></search><sort><creationdate>20130901</creationdate><title>A forecasting method to reduce estimation bias in self-reported cell phone data</title><author>Redmayne, Mary ; Smith, Euan ; Abramson, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-f9edfe68c1867b02de0f0b2998bdf9b7d60a6b3232bf8e39abf4879cafcbf8043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/925/929/170</topic><topic>692/700/478</topic><topic>Adolescent</topic><topic>Adolescents</topic><topic>Analysis</topic><topic>Bayesian analysis</topic><topic>Bias</topic><topic>Cell Phone</topic><topic>Cell phones</topic><topic>Cellular telephones</topic><topic>Electric waves</topic><topic>Electromagnetic Fields</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic waves</topic><topic>Environmental Exposure</topic><topic>Epidemiology</topic><topic>Forecasting</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>New Zealand</topic><topic>Nuclear radiation</topic><topic>original-article</topic><topic>Random errors</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Reproducibility of Results</topic><topic>Short message service</topic><topic>Text messaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Redmayne, Mary</creatorcontrib><creatorcontrib>Smith, Euan</creatorcontrib><creatorcontrib>Abramson, Michael J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of exposure science & environmental epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Redmayne, Mary</au><au>Smith, Euan</au><au>Abramson, Michael J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A forecasting method to reduce estimation bias in self-reported cell phone data</atitle><jtitle>Journal of exposure science & environmental epidemiology</jtitle><stitle>J Expo Sci Environ Epidemiol</stitle><addtitle>J Expo Sci Environ Epidemiol</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>23</volume><issue>5</issue><spage>539</spage><epage>544</epage><pages>539-544</pages><issn>1559-0631</issn><eissn>1559-064X</eissn><abstract>There is ongoing concern that extended exposure to cell phone electromagnetic radiation could be related to an increased risk of negative health effects. Epidemiological studies seek to assess this risk, usually relying on participants’ recalled use, but recall is notoriously poor. Our objectives were primarily to produce a forecast method, for use by such studies, to reduce estimation bias in the recalled extent of cell phone use. The method we developed, using Bayes’ rule, is modelled with data we collected in a cross-sectional cluster survey exploring cell phone user-habits among New Zealand adolescents. Participants recalled their recent extent of SMS-texting and retrieved from their provider the current month's actual use-to-date. Actual use was taken as the gold standard in the analyses. Estimation bias arose from a large random error, as observed in all cell phone validation studies. We demonstrate that this seriously exaggerates upper-end forecasts of use when used in regression models. This means that calculations using a regression model will lead to underestimation of heavy-users’ relative risk. Our Bayesian method substantially reduces estimation bias. In cases where other studies’ data conforms to our method's requirements, application should reduce estimation bias, leading to a more accurate relative risk calculation for mid-to-heavy users.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22805984</pmid><doi>10.1038/jes.2012.70</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-0631 |
ispartof | Journal of exposure science & environmental epidemiology, 2013-09, Vol.23 (5), p.539-544 |
issn | 1559-0631 1559-064X |
language | eng |
recordid | cdi_proquest_miscellaneous_1434014882 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | 639/925/929/170 692/700/478 Adolescent Adolescents Analysis Bayesian analysis Bias Cell Phone Cell phones Cellular telephones Electric waves Electromagnetic Fields Electromagnetic radiation Electromagnetic waves Environmental Exposure Epidemiology Forecasting Humans Mathematical models Medicine Medicine & Public Health New Zealand Nuclear radiation original-article Random errors Regression analysis Regression models Reproducibility of Results Short message service Text messaging |
title | A forecasting method to reduce estimation bias in self-reported cell phone data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20forecasting%20method%20to%20reduce%20estimation%20bias%20in%20self-reported%20cell%20phone%20data&rft.jtitle=Journal%20of%20exposure%20science%20&%20environmental%20epidemiology&rft.au=Redmayne,%20Mary&rft.date=2013-09-01&rft.volume=23&rft.issue=5&rft.spage=539&rft.epage=544&rft.pages=539-544&rft.issn=1559-0631&rft.eissn=1559-064X&rft_id=info:doi/10.1038/jes.2012.70&rft_dat=%3Cgale_proqu%3EA344497027%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426539795&rft_id=info:pmid/22805984&rft_galeid=A344497027&rfr_iscdi=true |