Nitric oxide and energy metabolism in mammals

Nitric oxide (NO) is a signaling molecule synthesized from L‐arginine by NO synthase in animals. Increasing evidence shows that NO regulates the mammalian metabolism of energy substrates and that these effects of NO critically depend on its concentrations at the reaction site and the period of expos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioFactors (Oxford) 2013-07, Vol.39 (4), p.383-391
Hauptverfasser: Dai, Zhaolai, Wu, Zhenlong, Yang, Ying, Wang, Junjun, Satterfield, M. Carey, Meininger, Cynthia J., Bazer, Fuller W., Wu, Guoyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 4
container_start_page 383
container_title BioFactors (Oxford)
container_volume 39
creator Dai, Zhaolai
Wu, Zhenlong
Yang, Ying
Wang, Junjun
Satterfield, M. Carey
Meininger, Cynthia J.
Bazer, Fuller W.
Wu, Guoyao
description Nitric oxide (NO) is a signaling molecule synthesized from L‐arginine by NO synthase in animals. Increasing evidence shows that NO regulates the mammalian metabolism of energy substrates and that these effects of NO critically depend on its concentrations at the reaction site and the period of exposure. High concentrations of NO (in the micromolar range) irreversibly inhibit complexes I, II, III, IV, and V in the mitochondrial respiratory chain, whereas physiological levels of NO (in the nanomolar range) reversibly reduce cytochomrome oxidase. Thus, NO reduces oxygen consumption by isolated mitochondria to various extents. In intact cells, through cGMP and AMP‐activated protein kinase signaling, physiological levels of NO acutely stimulate uptake and oxidation of glucose and fatty acids by skeletal muscle, heart, liver, and adipose tissue, while inhibiting the synthesis of glucose, glycogen and fat in the insulin‐sensitive tissues, and enhancing lipolysis in white adipocytes. Chronic effects of physiological levels of NO in vivo include stimulation of angiogenesis, blood flow, mitochondrial biogenesis, and brown adipocyte development. Modulation of NO‐mediated pathways through dietary supplementation with L‐arginine or its precursor L‐citrulline may provide an effective, practical strategy to prevent and treat metabolic syndrome, including obesity, diabetes, and dyslipidemia in mammals, including humans. © 2013 BioFactors, 39(4):383–391, 2013
doi_str_mv 10.1002/biof.1099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434012945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1420604240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4629-9158f0ad88bb0f4d382b1810ff78401bd5f212a20fc8b92040c814f51f8dbac33</originalsourceid><addsrcrecordid>eNqNkDtPwzAURi0EoqUw8AdQRhhCr1-JM0JFS6XSqgLEaNmJjQx5lDgV7b8nVUo3JKZ7h_Od4SB0ieEWA5ChdpVtvyQ5Qn0sYhIKEPgY9SHhOIwYpT105v0HAKbAxCnqEco5jSHuo3DumtqlQbVxmQlUmQWmNPX7NihMo3SVO18ErgwKVRQq9-foxLbHXOzvAL2OH15Gj-FsMZmO7mZhyiKShAnmwoLKhNAaLMuoIBoLDNbGggHWGbcEE0XApkInBBikAjPLsRWZVimlA3TdeVd19bU2vpGF86nJc1Waau0lZrT1kITxf6AEImCEQYvedGhaV97XxspV7QpVbyUGuQspdyHlLmTLXu21a12Y7ED-lmuBYQd8u9xs_zbJ--livFeG3cL5xmwOC1V_yiimMZdv84mE5dOSzZ-xjOkP0qaJ1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1420604240</pqid></control><display><type>article</type><title>Nitric oxide and energy metabolism in mammals</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Dai, Zhaolai ; Wu, Zhenlong ; Yang, Ying ; Wang, Junjun ; Satterfield, M. Carey ; Meininger, Cynthia J. ; Bazer, Fuller W. ; Wu, Guoyao</creator><creatorcontrib>Dai, Zhaolai ; Wu, Zhenlong ; Yang, Ying ; Wang, Junjun ; Satterfield, M. Carey ; Meininger, Cynthia J. ; Bazer, Fuller W. ; Wu, Guoyao</creatorcontrib><description>Nitric oxide (NO) is a signaling molecule synthesized from L‐arginine by NO synthase in animals. Increasing evidence shows that NO regulates the mammalian metabolism of energy substrates and that these effects of NO critically depend on its concentrations at the reaction site and the period of exposure. High concentrations of NO (in the micromolar range) irreversibly inhibit complexes I, II, III, IV, and V in the mitochondrial respiratory chain, whereas physiological levels of NO (in the nanomolar range) reversibly reduce cytochomrome oxidase. Thus, NO reduces oxygen consumption by isolated mitochondria to various extents. In intact cells, through cGMP and AMP‐activated protein kinase signaling, physiological levels of NO acutely stimulate uptake and oxidation of glucose and fatty acids by skeletal muscle, heart, liver, and adipose tissue, while inhibiting the synthesis of glucose, glycogen and fat in the insulin‐sensitive tissues, and enhancing lipolysis in white adipocytes. Chronic effects of physiological levels of NO in vivo include stimulation of angiogenesis, blood flow, mitochondrial biogenesis, and brown adipocyte development. Modulation of NO‐mediated pathways through dietary supplementation with L‐arginine or its precursor L‐citrulline may provide an effective, practical strategy to prevent and treat metabolic syndrome, including obesity, diabetes, and dyslipidemia in mammals, including humans. © 2013 BioFactors, 39(4):383–391, 2013</description><identifier>ISSN: 0951-6433</identifier><identifier>EISSN: 1872-8081</identifier><identifier>DOI: 10.1002/biof.1099</identifier><identifier>PMID: 23553707</identifier><language>eng</language><publisher>Netherlands: Blackwell Publishing Ltd</publisher><subject>Adipose Tissue, Brown - physiopathology ; Animals ; Cell Respiration ; Energy Metabolism ; Humans ; mitochondria ; Mitochondria - metabolism ; nitric oxide ; Nitric Oxide - physiology ; Obesity - metabolism ; Obesity - therapy ; oxidation ; Oxidation-Reduction ; Regional Blood Flow ; Signal Transduction</subject><ispartof>BioFactors (Oxford), 2013-07, Vol.39 (4), p.383-391</ispartof><rights>Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4629-9158f0ad88bb0f4d382b1810ff78401bd5f212a20fc8b92040c814f51f8dbac33</citedby><cites>FETCH-LOGICAL-c4629-9158f0ad88bb0f4d382b1810ff78401bd5f212a20fc8b92040c814f51f8dbac33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbiof.1099$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbiof.1099$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23553707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Zhaolai</creatorcontrib><creatorcontrib>Wu, Zhenlong</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Wang, Junjun</creatorcontrib><creatorcontrib>Satterfield, M. Carey</creatorcontrib><creatorcontrib>Meininger, Cynthia J.</creatorcontrib><creatorcontrib>Bazer, Fuller W.</creatorcontrib><creatorcontrib>Wu, Guoyao</creatorcontrib><title>Nitric oxide and energy metabolism in mammals</title><title>BioFactors (Oxford)</title><addtitle>BioFactors</addtitle><description>Nitric oxide (NO) is a signaling molecule synthesized from L‐arginine by NO synthase in animals. Increasing evidence shows that NO regulates the mammalian metabolism of energy substrates and that these effects of NO critically depend on its concentrations at the reaction site and the period of exposure. High concentrations of NO (in the micromolar range) irreversibly inhibit complexes I, II, III, IV, and V in the mitochondrial respiratory chain, whereas physiological levels of NO (in the nanomolar range) reversibly reduce cytochomrome oxidase. Thus, NO reduces oxygen consumption by isolated mitochondria to various extents. In intact cells, through cGMP and AMP‐activated protein kinase signaling, physiological levels of NO acutely stimulate uptake and oxidation of glucose and fatty acids by skeletal muscle, heart, liver, and adipose tissue, while inhibiting the synthesis of glucose, glycogen and fat in the insulin‐sensitive tissues, and enhancing lipolysis in white adipocytes. Chronic effects of physiological levels of NO in vivo include stimulation of angiogenesis, blood flow, mitochondrial biogenesis, and brown adipocyte development. Modulation of NO‐mediated pathways through dietary supplementation with L‐arginine or its precursor L‐citrulline may provide an effective, practical strategy to prevent and treat metabolic syndrome, including obesity, diabetes, and dyslipidemia in mammals, including humans. © 2013 BioFactors, 39(4):383–391, 2013</description><subject>Adipose Tissue, Brown - physiopathology</subject><subject>Animals</subject><subject>Cell Respiration</subject><subject>Energy Metabolism</subject><subject>Humans</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>nitric oxide</subject><subject>Nitric Oxide - physiology</subject><subject>Obesity - metabolism</subject><subject>Obesity - therapy</subject><subject>oxidation</subject><subject>Oxidation-Reduction</subject><subject>Regional Blood Flow</subject><subject>Signal Transduction</subject><issn>0951-6433</issn><issn>1872-8081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkDtPwzAURi0EoqUw8AdQRhhCr1-JM0JFS6XSqgLEaNmJjQx5lDgV7b8nVUo3JKZ7h_Od4SB0ieEWA5ChdpVtvyQ5Qn0sYhIKEPgY9SHhOIwYpT105v0HAKbAxCnqEco5jSHuo3DumtqlQbVxmQlUmQWmNPX7NihMo3SVO18ErgwKVRQq9-foxLbHXOzvAL2OH15Gj-FsMZmO7mZhyiKShAnmwoLKhNAaLMuoIBoLDNbGggHWGbcEE0XApkInBBikAjPLsRWZVimlA3TdeVd19bU2vpGF86nJc1Waau0lZrT1kITxf6AEImCEQYvedGhaV97XxspV7QpVbyUGuQspdyHlLmTLXu21a12Y7ED-lmuBYQd8u9xs_zbJ--livFeG3cL5xmwOC1V_yiimMZdv84mE5dOSzZ-xjOkP0qaJ1w</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Dai, Zhaolai</creator><creator>Wu, Zhenlong</creator><creator>Yang, Ying</creator><creator>Wang, Junjun</creator><creator>Satterfield, M. Carey</creator><creator>Meininger, Cynthia J.</creator><creator>Bazer, Fuller W.</creator><creator>Wu, Guoyao</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201307</creationdate><title>Nitric oxide and energy metabolism in mammals</title><author>Dai, Zhaolai ; Wu, Zhenlong ; Yang, Ying ; Wang, Junjun ; Satterfield, M. Carey ; Meininger, Cynthia J. ; Bazer, Fuller W. ; Wu, Guoyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4629-9158f0ad88bb0f4d382b1810ff78401bd5f212a20fc8b92040c814f51f8dbac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adipose Tissue, Brown - physiopathology</topic><topic>Animals</topic><topic>Cell Respiration</topic><topic>Energy Metabolism</topic><topic>Humans</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>nitric oxide</topic><topic>Nitric Oxide - physiology</topic><topic>Obesity - metabolism</topic><topic>Obesity - therapy</topic><topic>oxidation</topic><topic>Oxidation-Reduction</topic><topic>Regional Blood Flow</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Zhaolai</creatorcontrib><creatorcontrib>Wu, Zhenlong</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Wang, Junjun</creatorcontrib><creatorcontrib>Satterfield, M. Carey</creatorcontrib><creatorcontrib>Meininger, Cynthia J.</creatorcontrib><creatorcontrib>Bazer, Fuller W.</creatorcontrib><creatorcontrib>Wu, Guoyao</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>BioFactors (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Zhaolai</au><au>Wu, Zhenlong</au><au>Yang, Ying</au><au>Wang, Junjun</au><au>Satterfield, M. Carey</au><au>Meininger, Cynthia J.</au><au>Bazer, Fuller W.</au><au>Wu, Guoyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric oxide and energy metabolism in mammals</atitle><jtitle>BioFactors (Oxford)</jtitle><addtitle>BioFactors</addtitle><date>2013-07</date><risdate>2013</risdate><volume>39</volume><issue>4</issue><spage>383</spage><epage>391</epage><pages>383-391</pages><issn>0951-6433</issn><eissn>1872-8081</eissn><abstract>Nitric oxide (NO) is a signaling molecule synthesized from L‐arginine by NO synthase in animals. Increasing evidence shows that NO regulates the mammalian metabolism of energy substrates and that these effects of NO critically depend on its concentrations at the reaction site and the period of exposure. High concentrations of NO (in the micromolar range) irreversibly inhibit complexes I, II, III, IV, and V in the mitochondrial respiratory chain, whereas physiological levels of NO (in the nanomolar range) reversibly reduce cytochomrome oxidase. Thus, NO reduces oxygen consumption by isolated mitochondria to various extents. In intact cells, through cGMP and AMP‐activated protein kinase signaling, physiological levels of NO acutely stimulate uptake and oxidation of glucose and fatty acids by skeletal muscle, heart, liver, and adipose tissue, while inhibiting the synthesis of glucose, glycogen and fat in the insulin‐sensitive tissues, and enhancing lipolysis in white adipocytes. Chronic effects of physiological levels of NO in vivo include stimulation of angiogenesis, blood flow, mitochondrial biogenesis, and brown adipocyte development. Modulation of NO‐mediated pathways through dietary supplementation with L‐arginine or its precursor L‐citrulline may provide an effective, practical strategy to prevent and treat metabolic syndrome, including obesity, diabetes, and dyslipidemia in mammals, including humans. © 2013 BioFactors, 39(4):383–391, 2013</abstract><cop>Netherlands</cop><pub>Blackwell Publishing Ltd</pub><pmid>23553707</pmid><doi>10.1002/biof.1099</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-6433
ispartof BioFactors (Oxford), 2013-07, Vol.39 (4), p.383-391
issn 0951-6433
1872-8081
language eng
recordid cdi_proquest_miscellaneous_1434012945
source MEDLINE; Access via Wiley Online Library
subjects Adipose Tissue, Brown - physiopathology
Animals
Cell Respiration
Energy Metabolism
Humans
mitochondria
Mitochondria - metabolism
nitric oxide
Nitric Oxide - physiology
Obesity - metabolism
Obesity - therapy
oxidation
Oxidation-Reduction
Regional Blood Flow
Signal Transduction
title Nitric oxide and energy metabolism in mammals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20oxide%20and%20energy%20metabolism%20in%20mammals&rft.jtitle=BioFactors%20(Oxford)&rft.au=Dai,%20Zhaolai&rft.date=2013-07&rft.volume=39&rft.issue=4&rft.spage=383&rft.epage=391&rft.pages=383-391&rft.issn=0951-6433&rft.eissn=1872-8081&rft_id=info:doi/10.1002/biof.1099&rft_dat=%3Cproquest_cross%3E1420604240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1420604240&rft_id=info:pmid/23553707&rfr_iscdi=true